[PDF] Cours de Statistiques inférentielles





Previous PDF Next PDF



Comment construire un diagramme de Henry avec Excel et

Attention : la fonction graphique d'Excel Ajouter une courbe de tendance ne donne pas la droite de tendance d'un nuage de points mais la droite de régression.



La simulation probabiliste avec Excel

Relu par Kathy Chapelain et Henry P. Aubert simple à mettre en œuvre et qu'elle permet de simuler avec Excel la plupart des lois d'usage courant.



Traitement statistique des données pour le TIPE

On valide à l'aide du diagramme de Henry l'hypothèse d'une distribution normale (cf. NE JAMAIS UTILISER LES BARRES D'ERREURS AUTOMATIQUE D'EXCEL.



Prise en charge des gastro- entérites aiguës (GEA)

Liliane HENRY. Murielle SIHARATH Cf. fiches de surveillance de recensement et courbe épidémique ... Courbe épidémiologique : tableau Excel.



Les choix du producteur (I) : production coûts et recettes

Ingénieurs et techniciens sont donc par excel- compensatoire de l'autre facteur ; de plus la courbe est convexe par rapport à l'origine des axes ;.



Untitled

24 juil. 2018 Léo HENRY-BIABAUD. Confidentiel. 12. 3 INPUT DU MODELE DE TAUX. 3.1 COURBE DE TAUX DEFINITION. La structure par terme des taux d'intérêt (ou ...



Tests de normalité

4.2 Approche graphique : utiliser la Droite de Henry . Nous utiliserons principalement le tableur EXCEL dans ce support mais à plusieurs reprises nous.



TD n° 1 STATISTIQUE DESCRIPTIVE 7 13 8 10 9 12 10 8 9 10 6 14

L'abscisse du point d'intersection de ces deux courbes a-t-il une signification Graphiquement en utilisant la méthode de la droite de Henry.



Chapitre 4 : Régression linéaire

courbe (graphe de la fonction). Si le nuage a une forme particulière s'apparentant à une courbe ... Ce type de graphique est appelé droite de Henry.



Cours de Statistiques inférentielles

La droite de Henry est une méthode pour visualiser les chances qu'a une distribution d'être gaussienne. Elle permet de lire rapidement la moyenne et l'écart 



Comment construire un diagramme de Henry avec Excel et

La présente fiche explique comment faire un diagramme de Henry avec Excel et propose une aide à l’interprétation par des exemples Le document joint Diagramme de Henry xls fournit les données des exemples ainsi qu’une feuille de calcul toute faite pour vos propres données © Revue MODULAD 2006 - 1 - Numéro 35

Comment lisser les courbes d'un graphique ?

Vous pouvez également choisir de lisser les courbes de votre graphique. Pour lisser une courbe, double-cliquez sur celle-ci. Dans la fenêtre de Mise en forme qui apparaît à gauche, sélectionnez Remplissage et traits. Tout à fait en bas de la fenêtre, cochez la case Lissage. La courbe est automatiquement lissée !

Que dois-je faire si je veux tracer une courbe avec Excel?

Vous pouvez également choisir de lisser les courbes de votre graphique. Pour lisser une courbe, double-cliquez sur celle-ci. Dans la fenêtre de Mise en forme qui apparaît à gauche, sélectionnez Remplissage et traits. Tout à fait en bas de la fenêtre, cochez la case Lissage.

Comment créer un graphique en courbes sur Excel?

Cliquez sur l'onglet Insertion et cliquez sur l'icône Insérer un graphique en courbes dans la partie Graphiques. Choisissez le modèle que vous souhaitez utiliser. Le graphique sera alors intégré dans le classeur, avec des lignes droites correspondant à chaque point de données.

Comment pouvez-vous lisser une courbe sur Excel?

Pour lisser une courbe, double-cliquez sur celle-ci. Dans la fenêtre de Mise en forme qui apparaît à gauche, sélectionnez Remplissage et traits. Tout à fait en bas de la fenêtre, cochez la case Lissage. La courbe est automatiquement lissée !

Cours de Statistiques inférentielles

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

loi.normale.standard.inverse(1)Khi-Deux 2()K

2khideux(k;;1)

;1;2inverse.Loi.f(;1;2))

8CHAPITRE 1. LOIS STATISTIQUES

Chapitre2Convergences

2.1 Convergence en probabilité

2.1.1 Inégalités utiles

Inégalité de Markov simplifiée

SoitYune v.a.r.,gune fonction croissante et positive ou nulle sur l"ensemble des réels, vérifiantg(a)>0,

alors

8a >0;P(Ya)E(g(Y))g(a):

Preuve

E(g(Y)) =Z

g(y)f(y)dy=Z Y Yag(y)f(y)dy

Z

Yag(y)f(y)dycargest positive ou nulle

g(a)Z

Yaf(y)dycargest croissante

=g(a)P(Ya)

AinsiE(g(Y))g(a)P(Ya).

Rappel : Inégalité de Bienaymé-Chebyshev

SoitXune variable aléatoire admettant une espéranceE(X)et de variance finie2(l"hypothèse de variance finie garantit l"existence de l"espérance).

L"inégalité de Bienaymé-Chebychev s"énonce de la façon suivante : pour tout réel"strictement positif,

P(jXE(X)j ")2"

2: PreuveVoir Cours S3 ou prendreY=jXE(X)j,a="etg(t) =t2dans l"inégalité de Markov.

10CHAPITRE 2. CONVERGENCES2.1.2 Convergence en probabilité

Définition 4 (Convergence en probabilité)On considère une suite(Xn)d"une v.a. définie sur

Xune autre v.a. définie sur

On dit que la suite(Xn)converge en probabilité vers une constante réelle`si

8" >0;limn!1P(jXn`j> ") = 0:

On dit que la suite(Xn)converge en probabilité versXsi

8" >0;limn!1P(jXnXj> ") = 0:

Exemple de la loi binomiale :On réalisenexpériences indépendantes et on suppose que lors de

chacune de ces expériences, la probabilité d"un événement appelé "succès" estp. SoitSnle nombre de

succès obtenus lors de cesnexpériences. La variance aléatoireSn, somme denvariables de Bernoulli

indépendantes, de même paramètrep, suit une loi binomiale :Sn,! B(n;p). On s"intéresse alors à la variable aléatoire Snn , proportion de succès surnexpériences, a donc pour espéranceE(Snn ) =pet pour varianceV(Snn ) =1n

2V(Sn) =p(1p)n

. Commep(1p)atteint son maximum

lorsquep= 1=2, on a ainsip(1p)1=4. En appliquant l"inégalité de Bienaymé-Chebyshev, il vient

P(jSn=npj ")p(1p)n"

214n"2:

Ainsi pour tout" >0, il existe >0(plus précisément >14n"2) tel queP(jSn=npj ")< ou encorelimn!1P(jSn=npj ") = 0. La variable aléatoireSnn converge en probabilité versp.

Théorème 2.1.1Soit(Xn)une suite de variables aléatoires sur le même espace probabilisé(

;P)ad- mettant des espérances et des variances vérifiant lim n!1E(Xn) =`etlimn!1V(Xn) = 0; alors les(Xn)convergent en probabilité vers`. PreuveSoit" >0. PosonsE(Xn) =`+unaveclimun= 0. Alors il existeN2Ntel que : nN) junj< "=2 et donc à partir du rangN, jXnE(Xn)j< "=2) jXn`j< ";(2.1) carjXn`j=jXnE(Xn) +E(Xn)`j jXnE(Xn)j+jE(Xn)`j. L"implication (2.1) peut être encore écrite sous la forme jXn`j ") jXnE(Xn)j "=2: Par conséquent, en utilisant l"inégalité de Bienaymé-Chebyshev,

P(jXn`j ")P(jXnE(Xn)j "=2)V(Xn)("=2)2;

qui tend vers 0 quandntend vers l"infini. Conséquence : Pour que(Xn)converge en probabilité versX, il suffit queE(XnX)!0etV(XnX)!

0lorsquen! 1(la démonstration passe par l"inégalité de Bienaymé-Chebychev).

Cours Proba-Stat / Pierre DUSART112.1.3 Convergence en moyenne quadratique Définition 5Une suite de v.a.r.(Xn)n2Nconverge en moyenne quadratique vers une v.a.r.Xsi lim n!1E((XnX)2) = 0:

Propriétés :

1. La convergence en moyenne quadratique entraîne la convergence en probabilité.

2. Pour les(Xn)sont des variables aléatoires d"espérance et de variance finies, siE(Xn)!et

V ar(Xn)!0alorsXnconverge en moyenne quadratique vers. Preuve1. On applique l"inégalité de Markov avecY=jXnXj,a="2etg(t) =t2. Il suffit ensuite de remarquer queP(jXnXj2> "2) =P(jXnXj> ")et utiliser l"hypothèse que limE((XnX)2) = 0.

2.limE((Xn)2) = limE(X2n)2E(X) +2= limE(X2n)E(Xn)2= limV(Xn) = 0:

2.1.4 Loi faible des grands nombres

Théorème 2.1.2Soit(Xn)une suite de variables aléatoires indépendantes sur le même espace probabi-

lisé( ;P)ayant une même espérance mathématique`et des variances vérifiantlimn!11n 2Pn i=12i= 0:

On poseSn=X1++XnalorsSnn

converge en probabilité vers`.

Si on considère une suite de variables aléatoires(Xn)indépendantes définies sur un même espace probabi-

lisé, ayant même espérance et même variance finie notées respectivementE(X)etV(X). La loi faible des

grands nombres stipule que, pour tout réel"strictement positif, la probabilité que la moyenne empirique

S nn s"éloigne de l"espérance d"au moins", tend vers 0 quandntend vers l"infini. La moyenneSnn converge en probabilité vers l"espérance communeE(X).

PreuveOn aE(Sn=n) =`etlimV(Sn=n) = lim1n

2P2i= 0par hypothèse. Ainsi par le théorème

2.1.1,Sn=nconverge en probabilité vers`.

2.2 Convergence en loi

Définition 6Soient(Xn)etXdes variables aléatoires sur un même espace probabilisé( ;P), de fonc- tions de répartition respectivesFnetF; on dit que les(Xn)convergent versXen loi (et on noteXnL!X) si en tout pointxoùFest continue, lesFn(x)convergent versF(x).

Propriétés : (admises)

1. La convergence en probabilité entraîne la convergence en loi.(XnP!X))(XnL!X)

2. Si les(Xn)etXsont des variables aléatoires discrètes, alorsXnconverge en loi versXsi et

seulement si

8x2R;limn!1P(Xn=x) =P(X=x):

PreuveIl s"agit de montrer que si(Xn)nconverge en probabilité versX, la suite(FXn)nconverge vers F

X(respectivement préalablement notéesFnetF). On utilise le lemme suivant : soientA,Bdes variables

aléatoires réelles,cun réel et" >0. Alors on a l"inégalité

P(Ac)B(c+") +P(jABj> ");

12CHAPITRE 2. CONVERGENCEScar

P(AC) =P(Ac\Bc+") +P(Ac\B > c+")

=P(AcjBc+")P(Bc+") +P(Ac\B" > c)

P(Bc+") +P(AB >")carP(j)1

P(Bc+") +P(jABj> ")

carP(jABj> ") =P(AB > ") +P(AB <")P(AB <") De ce lemme, il vient respectivement pour(A=Xn; c=x; B=X)puis(A=X; c=x"; B=Xn)

P(Xnx)P(Xx+") +P(jXnXj> ")(2.2)

P(Xnx)P(Xx") +P(jXnXj> ")(2.3)

Passons à la démontration proprement dite. Soitxun point oùFest continue. Soit >0. Par continuité

deFXenx, il existe" >0tel quejFX(x+")FX(x)j< =2etjFX(x")FX(x)j< =2. Pour cet", de part la convergence de(Xn)nversX, il existen0tel que, pour toutnn0,

P(jXnXj> ")< =2:

Ainsi par(2:2),

F

Xn(x)FX(x)FX(x+") +P(jXnXj> ")FX(x)

FX(x+")FX(x) +P(jXnXj> ")< =2 +=2 =

et par(2:3), F

Xn(x)FX(x)FX(x")FX(x)P(jXnXj> ")

=2=2 =

Donc8 >0;9n0tel que8nn0;jFXn(x)FX(x)j< .

Proposition 2.2.1 (Convergence de la loi hypergéométrique vers la loi binomiale)Soit(XN)

une suite de variables aléatoires sur un même espace probabilisé, de loi hypergéométrique :XN,!

H(N;n;p)oùnetpsont supposés constants. Alors(XN)convergent en loi, quandNtend vers l"in- fini, versXde loi binomialeB(n;p)(mêmes valeurs de paramètres).

PreuveLa probabilité ponctuelle deXNest

P(XN=k) =CkNpCnk

NqC nN:

LorsqueNtend vers l"infini avecnconstant,

C nN=N(N1)(Nn+ 1)n!=Nn(11N )(1n1N )1n!Nnn! car(1mN )1lorsqueNtend vers l"infini. De même, lorsqueNtend vers l"infini avecpetkfixes, alors C kNp(Np)kk!etCnk

N(1p)(N(1p))nk(nk)!:

Finalement,

P(XN=k)pk(1p)nkn!k!(nk)!=Cknpk(1p)nk;

ce qui correspond à la probabilité ponctuelle d"une variable aléatoire qui suit la loi binomialeB(n;p).

Cours Proba-Stat / Pierre DUSART13C"est pour cela que lorsque la population (de tailleN) est très grande, on peut assimiler la loi d"une

variable aléatoire comptant le nombre de réussite sur un tirage sans remise (loi hypergéométrique) à une

loi binomiale (tirage avec remise). Proposition 2.2.2 (Convergence de la loi binomiale vers une loi de Poisson)Soit(Xn)une

suite de variables aléatoires binomiales sur un même espace probabilisé : pour toutn,XnsuitB(n;pn).

On suppose quelimn!+1pn= 0etlimn!+1npn=. Alors(Xn)convergent en loi, quandntend vers l"infini, vers une loi de Poisson de paramètre.

PreuvePourkfixé,

P(Xn=k) =n(n1)(nk+ 1)k!pkn(1pn)nk

(npn)kk!(1pn)n(11n )(1k1n )(1pn)k On cherche la limite de(1pn)n= exp(nln(1pn)) = exp(nln(1npn=n)). Commelimn!+1npn=, on posenpn=+"naveclimn!+1"n= 0et ainsiln(1npn=n)1=ndonclimn!+1(1pn)n=e.

Commekest fixé,limn!+1(11n

)(1k1n )(1pn)k= 1 Ainsi lim n!+1P(Xn=k) =ekk!;

ce qui correspond à la probabilité ponctuelle d"une variable aléatoire qui suit une loi de PoissonP(). Il

s"agit donc d"une convergence en loi en appliquant le point 2 des propriétés. Corollaire 2.2.3 (Application pratique)On peut remplacerB(n;p)parP()avec=nppourn très grand (n >50) etptrès petit (p <0;1).

2.3 Convergence des fonctions caractéristiques

2.3.1 Continuité

Théorème 2.3.1 (théorème de continuité de Levy)Soit(Xn)une suite de variables aléatoires de

fonctions caractéristiques'XnetXune variable aléatoire de fonction caractéristique'X, toutes sur un

même espace probabilisé. Si les(Xn)convergent en loi versXalors la suite de fonctions('Xn)converge

uniformément vers'Xsur tout intervalle[a;a].

Inversement si les('Xn)convergent vers une fonction'dont la partie réelle est continue en 0, alors'

est la fonction caractéristique d"une variable aléatoireXvers laquelle lesXnconvergent en loi.

On peut le résumer ainsi :

f8t2R;'Xn(t)!'X(t)g , fXnL!Xg

2.3.2 Théorème central limite

Corollaire 2.3.2 (Théorème central limite)Soit une suite(Xn)de variables aléatoires définies sur

le même espace de probabilité, suivant la même loiDet dont l"espéranceet l"écart-typecommunes

existent et soient finis (6= 0). On suppose que les(Xn)sont indépendantes. Considérons la somme

S n=X1++Xn. Alors l"espérance deSnestnet son écart-type vautpnetSnn pn converge en loi vers une variable aléatoire normale centrée réduite.

14CHAPITRE 2. CONVERGENCESPreuvePosonsYi=Xi

pn . Alors

Yi(t) ='Xi

pn (t) ='Xi(t pn

Pourtfixé, lorsquentend vers l"infini,t

pn est infiniment petit. Ecrivons le développement limité, au voisinage de 0, de la fonction caractéristique d"une variable aléatoireW:

W(u) ='W(0) +u '0W(0) +u22

'00W(0) +u2"(u) = 1 +i u E(W)u22

E(W2) +u2"(u)

En posantW=Xi,u=t=(pn), on aE(W) =E(Xi) = 0etE(W2) =E((Xi)2) =V(Xi) =

2d"où

Xi(t pn ) = 1t222n2+1n "(t3=3pn) = 1t22n+1n "i(n) aveclimn!+1"i(n) = 0.

Maintenant, posonsZn=Snn

pn =Pn i=1Yi. L"indépendance desXnentraîne celle desYiet ainsi

Zn(t) =nY

quotesdbs_dbs33.pdfusesText_39
[PDF] droite de henry pdf

[PDF] programmation linéaire exercices corrigés pdf

[PDF] programmation linéaire exercices corrigés

[PDF] programmation linéaire simplexe

[PDF] recherche opérationnelle programmation linéaire exercices corrigés pdf

[PDF] exercices recherche operationnelle

[PDF] theme astral chinois complet gratuit interpretation

[PDF] cours recherche opérationnelle methode de simplexe

[PDF] recherche opérationnelle simplexe exercices corrigés

[PDF] livre recherche opérationnelle pdf

[PDF] cours et exercices corrigés de recherche opérationnelle+pdf

[PDF] inpes

[PDF] methode boscher pdf download

[PDF] méthode boscher cahier de lecture pdf

[PDF] methode boscher en ligne