[PDF] de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1





Previous PDF Next PDF



I Raccordement avec deux arcs de parabole II Un polynôme de

On recherche un autre profil pour la rampe en choississant cette fois la courbe représentative ? d'une fonction g définie sur [0; 1] par g(x) = ax3 + bx2 + 



Activit 4

L'un des intérêts des tangentes est de permettre de raccorder deux courbes jonction de deux paraboles avec



Réseaux transmissions

Hier deux mondes coexistaient : le monde des télécommunications avec ses Indiquer deux des fonctions assurées par un équipement de raccordement.



Création de fonctions technologiques de traitement

plusieurs arêtes de la pièce soit un raccordement entre deux faces. • La fonction Dépouille permet d'incliner une face de la pièce d'un angle donné.



de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1

(a) Montrer que la fonction dérivée de f s'écrit : f?(x) = 2 sin x(1 ? 2 cosx). (b) Étudier le signe de f? sur [0; ?]. 3. Dresser le tableau de variations de f 



Création de fonctions technologiques de traitement

La fonction Raccordement permet d'appliquer soit un rayon variable à une ou plusieurs arêtes de la pièce



I Fonctions et domaines de définition II Limites

I.2 Représentation graphique. Graphe d'une fonction de 2 variables. Courbes de niveau. Exemple de f(x y) = x2 



Dispositifs de retenue routiers - - Contexte réglementaire

Il a deux fonctions principales : retenir et rediriger. Les raccordements entre deux barrières de conception et/ou de performance différents.



Chapitre I : Continuité et dérivabilité des fonctions réelles

De plus la fonction atteint ses bornes. Corollaire 2 : - En appliquant les propriétés sur les opérations avec les limites le produit



Untitled

fonction du temps des matériaux en contact avec l'eau



[PDF] domaine de définition Exercice 3

Calculer le domaine de définition des fonctions f définies de la façon suivante : a f(x) = 5x + 4 x2 + 3x + 2 b f(x) = px + 3



[PDF] de la 1`ere S `a la TS Chapitre 4 : Études de fonctions Exercice n?1

On donne la fonction f définie par f(x) = x2 x2 ? 2x + 2 et on note (Cf ) sa courbe représentative dans un rep`ere orthonormé 1 Déterminer le domaine de 



[PDF] Correction Devoir commun n?2 EXERCICE 1 : Soit f la fonction

(cours : fonction polynôme) • Étude en 0 : point de "raccordement" : f(0) = 1 ? Limite à gauche de f : lim x?0 x



[PDF] I Fonctions et domaines de définition II Limites - Normale Sup

Soit u(x y) et v(x y) deux fonctions définies sur un domaine D et (a b) ? D fonction à deux variables c'est approcher le graphe de f au voisinage 



[PDF] Domaine de définition dune fonction : solutions des exercices

1°/ la condition x ? ?3 sur la première droite ; 2°/ la condition x < ?2 ou x > 2 sur la deuxième droite ; 3°/ ces deux conditions simultanément sur la 



[PDF] Dérivation : parabole et raccordement à laide de tangentes

Cette courbe est constituée de deux portions de paraboles représentant deux fonctions : la première est définie sur [0 ; 1] et la seconde est définie sur [1 ; 2] 



[PDF] ficallpdf - Exo7

188 225 03 Raccordement de solutions Soient fg deux fonctions de R dans R Traduire en termes de quantificateurs les expressions suivantes :



[PDF] Les conditions de raccordement en relativité générale - Numdam

Le problème du raccordement local de deux métriques donnees se pose de maniere inevitable dans 1'etude aux fonctions de transformation correspondantes



[PDF] Analyse 2 - Département de mathématiques et statistique

Ce cours porte sur le calcul intégral Il se divise en trois parties La premi`ere présente la définition et les propriétés de l'intégrale d'une fonction

:
de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1 de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°1:

On donne la fonctionfd´efinie surRpar :f(x) =-x4+ 2x2+ 1. On appelle Γ la courbe repr´esentative defdans un rep`ere orthonorm´e (O;?ı,??) . 1.

´Etudier la parit´e def.

2. D´eterminer les limites defaux bornes de son domaine de d´efinition.

3. Calculer la fonction d´eriv´ee defet ´etudier son signe.

4. Dresser le tableau de variations def.

5. Tracer la courbe repr´esentative def.

Corrig´e

Exercice n°2:

Soit la fonction d´efinie surR- {1}, parf(x) =x2+x+ 1x-1. On note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Montrer que (Cf) admet un centre de sym´etrie en un point d"abscisse 1.

2. D´eterminer les limites defaux bornes de son domaine de d´efinition. Que peut-on

en d´eduire pour (Cf)?

3. D´eterminer trois r´eelsa, betctels que :f(x) =ax+b+x

x-1.

4. En d´eduire l"existence d"une asymptote oblique pour (Cf) en +∞.

5. Calculer la fonction d´eriv´ee defet ´etudier son signe.

6. Dresser le tableau de variation def.

7. Tracer (Cf).

Corrig´e

Exercice n°3:

On donne la fonctionfd´efinie parf(x) =3x2+ 2x-3, et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. D´eterminer le domaine de d´efinitionDfde la fonctionf.

2. Montrer que la droite d"´equationx=-1 est axe de sym´etrie de (Cf).

Dans la suite de l"exercice, la fonctionfsera ´etudi´ee sur [-1;1[?]1;+∞[.

3. D´eterminer les limites en 1 et la limite en +∞. Que peut-on en d´eduire pour (Cf)?

4. Calculer la fonction d´eriv´ee defet ´etudier son signe.

5. Dresser le tableau de variations def.

6. Tracer (Cf).

Corrig´e

L.BILLOT 1DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°4:

On donne la fonctionfd´efinie parf(x) =x2x2-2x+ 2, et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. D´eterminer le domaine de d´efinition def.

2. D´eterminer les limites defaux bornes du domaine, en d´eduire l"existence d"une

asymptote horizontale (Δ) pour (Cf). 3. ´Etudier les positions relatives de (Cf)et de (Δ).

4. Calculer la fonction d´eriv´ee defet ´etudier son signe.

5. Dresser le tableau de variations def.

6. Tracer (Cf).

Corrig´e

Exercice n°5:

On donne la fonctionfd´efinie parf(x) =2x3+ 272x2et on note (Cf) sa courbe repr´e- sentative dans un rep`ere orthonorm´e.

1. D´eterminer l"ensemble de d´efinitionDfdef.

2. D´eterminer les limites defaux bornes de son ensemble de d´efinition.

3. Montrer que la droite d"´equationy=xest asymptote oblique `a la courbe en +∞

et en-∞.

4. (a) Justifier l"´equivalence :x?3?x3?27.

(b) Calculer la fonction d´eriv´ee def. (c)

´Etudier le signe def?.

5. Dresser le tableau de variations def.

6. Tracer la courbe repr´esentative def.

Corrig´e

Exercice n°6:

On donne la fonctionfd´efinie surRparf(x) = cos2x-2cosxet on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. (a) Montrer quefest 2π-p´eriodique.

(b) Montrer quefest paire.

2. (a) Montrer que la fonction d´eriv´ee defs"´ecrit :f?(x) = 2sinx(1-2cosx).

(b)

´Etudier le signe def?sur [0;π].

3. Dresser le tableau de variations defsur [0;π].

4. Tracer (Cf) sur un intervalle de longueur 4π.

Corrig´e

L.BILLOT 2DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°7:

On donne la fonctionfd´efinie surRparf(x) =sinx1-sinxet on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Montrer quefest d´efinie ssix?=π

2+ 2kπaveck?Z.

2. Montrer quefest 2π-p´eriodique.

Pour la suite de l"exercice, on ´etudiera la fonction sur l"intervalle? -3π

2;π2?

3. D´eterminer les limites defen :

(a)-3π

2par valeurs sup´erieures,

(b)

2par valeurs inf´erieures,

4. Calculer la fonction d´eriv´ee defet ´etudier son signe.

5. Dresser le tableau de variations def

6. Tracer (Cf) sur?

-3π

2;5π2?

Corrig´e

Exercice n°8:

On donne la fonctionfd´efinie surRparx2-|x|et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Montrer quefest paire.

2. Donner l"expression defsans valeur absolue surR+puis surR-.

3.

´Etudier la d´erivabilit´e defen 0.

4.

´Etudier la fonctionfsurR+.

5. Tracer (Cf) surR.

Corrig´e

Exercice n°9:

On donne la fonctionfd´efinie surRparx-?|x-1|et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Donner l"expression defsans valeur absolue sur [1;∞[ et sur ]- ∞;1].

2.

´Etudier la d´erivabilit´e defen 1.

3.

´Etudier la fonction sur ]- ∞;1].

4.

´Etudier la fonction sur [1;+∞[.

5. Dresser le tableau de variations defsurR.

6. Tracer la courbe (Cf).

Corrig´e

L.BILLOT 3DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions D´efinition :soitxun nombre r´eel, on appelle partie enti`ere dexet on noteE(x), le plus grand entier inf´erieur ou ´egal `ax.

Exemples :

E(5,4) = 5E(⎷

2) = 1E(4) = 4E(-2,5) =-3.

Exercice n°10:

Tracer la courbe repr´esentative de la fonction partie enti`ere :x?→E(x) sur l"intervalle [-3,3[.

Corrig´e

Exercice n°11:

On d´efinit surRla fonctionfpar :f(x) =x-E(x).

1. Montrer queEest p´eriodique de p´eriode 1.

2. Donner l"expression defsur [0,1[ puis sur [1,2[.

3. Tracer la courbe repr´esentative defsur [-3,3[.

Corrig´e

L.BILLOT 4DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°1:

1. Pour toutx?R,-x?R. (On peut aussi dire que le domaine de d´efinition est

centr´e en 0.) soitx?R,f(-x) =-(-x)4+2(-x)2+1 =-x4+2x2+1 =f(x), doncfest paire

2. lim

x→+∞f(x) = limx→+∞-x4=-∞et par sym´etrie : limx→-∞f(x) =-∞.

3.fest d´erivable surRet pour toutx?R, on a :f?(x) =-4x3+ 4x= 4x(1-x2).

D"une part 4x?0?x?0, d"autre part 1-x2?0?x?[-1;1] (r`egle du signe du trinˆome), ce qui donne : x0 1 +∞ 4x0++

1-x2+0-

f?(x)0+0-

4.x0 1 +∞

f?(x)0+0- 2 f(x)

1-∞

5. 123
-1 -2 -3 -4 -51 2 3 4-1-2-3-4-5 Dans un graphique doivent apparaˆıtre toutes les droites dont il a ´et´e question dans le sujet, auquel s"ajoutent les tangentes horizontales.

Retour

L.BILLOT 5DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°2:

1. Le domaine de d´efinition est centr´e en 1, de plus pour touth?= 0, on a :

1

2[f(1 +h) +f(1-h)] =12?

(1 +h)2+ (1 +h) + 11 +h-1+(1-h)2+ (1-h) + 11-h-1? 1 2?

3 + 3h+h2h+3-3h+h2-h?

1 2?

3 + 3h+h2-3 + 2h-h2h?

=12×6hh= 3 Donc le point Ω de coordonn´ees (1;3) est centre de sym´etriede (Cf).

2.•limx→+∞f(x) = limx→+∞x

2 x= limx→+∞x= +∞et par sym´etrie, limx→-∞f(x) =-∞.

•limx→1(x2+x+ 1) = 3 et lim

x >→1x-1 = 0+, donc lim x >→1f(x) = +∞, et par sym´etrie : lim x <→1f(x) =-∞.

3. Pour toutx?= 1,ax+b+c

x-1=(ax+b)(x-1) +cx-1=ax2+ (b-a)x+c-bx-1, en identifiant le num´erateur de cette fraction avec celui def(x), on obtient :???a= 1 b-a= 1 c-b= 1????a= 1 b= 2 c= 3, doncf(x) =x+ 2 +3 x-1.

4. lim

x→+∞3 x-1= 0, donc limx→+∞(f(x)-(x+2)) = 0 et la droite (d) d"´equationy=x+2 est asymptote `a la courbe en +∞. Puisque Ω?(d), nous pouvons d´eduire que (d) est aussi asymptote `a (Cf) en-∞.

5. Pourx?= 1,fest d´erivable comme quotient de deux polynˆomes, et :

f ?(x) =(2x+ 1)(x-1)-(x2+x+ 1) (x-1)2=x2-2x-2(x-1)2. Pour toutx?= 1,(x-1)2>0, doncf?(x) est du signe dex2-2x-2, polynˆome ayant pour racines 1-⎷

3 et 1 +⎷3 qui, d"apr`es la r`egle du signe du trinˆome est

positif ssix?]- ∞;1-⎷

3[?]1 +⎷3;+∞[.

6. x-∞1-⎷3 1 1 +⎷3 +∞ f?(x)+0--0+

3-2⎷3+∞+∞

f(x) -∞ -∞3 + 2⎷3

Remarque : il ´etait possible de ne faire que

la moiti´e du tableau de variations.2468 -2 -4 -62 4 6-2-4-6

Retour

L.BILLOT 6DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°3:

1.fest d´efinie ssix2+ 2x-3?= 0 ssix?= 1 etx?=-3, doncDf=R- {-3;1}.

2.Dfest sym´etrique par rapport `a 1, et pour touth?=±2, on a :

f(-1 +h) =3 (-1 +h)2+ 2(-1 +h)-3=3h2-4, etf(1 +h) =3 (1 +h)2+ 2(1 +h)-3=3h2-4. Doncf(-1+h) =f(-1-h) et la droite d"´equationx=-1 est axe de sym´etrie de (Cf).

3.•lim

x <→1x2+ 2x-3 = 0-, donc lim x <→1f(x) =-∞, d"autre part :lim x >→1x2+ 2x-3 = 0+, donc lim x >→1f(x) = +∞. (Cf) admet une asymptote verticale d"´equationx= 1.

Remarque : Le signe (0

+ou 0-) est facile `a d´eterminer ici, cela serait plus com- pliqu´e avec par exemple :x2-2x.

•limx→+∞x2+ 2x-3 = +∞, donc limx→+∞f(x) = 0, (Cf) admet une asymptote hori-

zontale d"´equationy= 0 en +∞.

4.fest d´erivable surDf, et pour toutx? Df:f?(x) =-3(2x+ 2)

(x2+ 2x-3)2. Le d´enominateur ´etant strictement positif,f?(x)?0? -3(2x+ 2)?0?x?-1. 5. x-1 1 +∞ f?(x)0-- -34+∞ f(x) -∞0 2 -22-2-4-6

Retour

L.BILLOT 7DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctionsquotesdbs_dbs33.pdfusesText_39
[PDF] le profil d un toboggan est constitué de deux parties

[PDF] raccordement de courbes représentatives de fonctions

[PDF] raccordement routier maths

[PDF] dérivée de 1/u^n

[PDF] polyploidie

[PDF] dérive génétique exemple animaux

[PDF] spéciation sans isolement géographique

[PDF] montrer comment le milieu peut exercer une sélection sur une population

[PDF] selection naturelle def

[PDF] effet fondateur terminale s

[PDF] dérive génétique et effet fondateur

[PDF] sélection naturelle svt 3ème

[PDF] primitive sin u

[PDF] dérivée arccos

[PDF] dérivée arcsin u