[PDF] Chapitre 4 Formules de Taylor En effet on doit calculer





Previous PDF Next PDF



Tableau de dérivées

Exemple 1 : Calculer la dérivée de la fonction 2 ? 2 + 4 = 0 n'a pas de solution dans ? car ? = 4 ? 4 × 4 = ?12 < 0 donc pour tout de.





Sur des problèmes aux conditions aux limites et à dérivées

19-Feb-2017 de Caputo dérivée fractionnaire de Grunwald-Letnikov



FONCTION DERIVÉE

h?0. 2a + h = 2a. Pour tout nombre a on associe le nombre dérivé de la fonction f égal à 2a. Cette fonction s'appelle la fonction dérivée de f.



LA DÉRIVÉE SECONDE

supposons que sa dérivée première ' soit positive pour toute valeur dans l'intervalle 0 1. Ces informations à propos de la fonction et de sa dérivée 



Sur les Equations aux Dérivées Partielles de la Physique

I1 s'agit -de trouver une fonction V qui satisfasse a l'equation de Laplace dans tout 1'espace exterieur au conducteuir et qui se reduise a 0 a l'infini et 



A functional extension of the Ito formula

30-Dec-2009 projection prévisible de la dérivée de Malliavin est remplacée par une dérivée verticale. 1. Introduction. Let X : [0 T?[×? ?? Rd be a ...



Chapitre 4 Formules de Taylor

En effet on doit calculer les dérivées successives de sin(x) en 0. Nous avons formule de Taylor-Lagrange `a l'ordre n au voisinage de 0 nous dit que



LA DÉRIVÉE

1.4. Fonction exponentielle (de forme avec. 0): . 3 2? indique que l'on effectue la dérivée de la fonction 3 2. Le symbole primé.



FONCTION INVERSE

Remarque : La courbe d'équation = de la fonction inverse appelée hyperbole de centre. O





[PDF] Tableau de dérivées - Parfenoff org

I) Dérivées des fonctions usuelles II) Dérivées et opérations + 4 = 0 n'a pas de solution dans ? car ? = 4 ? 4 × 4 = ?12 < 0 donc pour tout de



[PDF] FONCTION DERIVÉE - maths et tiques

Calculons le nombre dérivé de la fonction f en un nombre réel quelconque a Pour h ? 0 : f (a + h) ? f (a) h = a + 



[PDF] LA DÉRIVÉE

Dérivée des fonctions usuelles 0 1 2 Fonction identité Soit la fonction identité de Alors Fonction exponentielle (de forme avec 0):



[PDF] Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée

On dit que f est dérivable sur R et que sa fonction dérivée est définie par f (x) = 2x 2 Dérivées des fonctions usuelles : Fonction Fonction dérivée pour tout 



[PDF] Tableau des dérivées élémentaires et règles de dérivation

Tableau des dérivées élémentaires et règles de dérivation 1 Dérivation des fonctions élémentaires Fonction Df Dérivée D f f(x) = k R f (x) = 0



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

La notion de dérivée est une notion fondamentale en analyse Elle permet d'étudier les variations d'une fonction de construire des tangentes `a une courbe 



[PDF] Tableaux des dérivées

Dérivées des fonctions usuelles Notes Fonction f Fonction dérivée f ' Intervalles de dérivabilité P f (x) = k (constante réelle) f ' (x) = 0



[PDF] Zéros de la dérivée

Recherche de conditions suffisantes : combien de zéros pour la dérivée ? Exemple 1 Aucun zéro Soit f 1 la fonction définie sur IR par f 1(x) = x



[PDF] Dérivation

La fonction qu'on dérive n'est pas forcément partout définie d'o`u le premier ? et sa dérivée encore moins d'o`u le second

  • Quelle est la dérivée de 0 ?

    Sa dérivée est toujours positive (ou nulle pour x = 0).
  • Comment calculer f '( 0 ?

    Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
  • Quelle est la dérivé de 1 ?

    La dérivée de 1 est nulle, car c'est une constante. Le même résultat est obtenu lors du calcul de la dérivée d'un nombre quelconque.
  • Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0).
Chapitre 4 Formules de Taylor

Chapitre 4Formules de Taylor

La formule de Taylor, du nom du math´ematicien Brook Taylor qui l"´etablit en 1715, permet l"approximation d"une fonction plusieurs fois d´erivable au voisinage d"un point par

un polynˆome dont les coefficients d´ependent uniquement des d´eriv´ees de la fonction en ce

point. La premi`ere ´etape est la formule (0+) =(0) +(0) +() qui montre que, siest d´erivable, alorsest approch´ee par un polynˆome de degr´e 1 (une droite). Comment faire pour augmenter le degr´e?

4.1 Les trois formules de Taylor

Notations 4.1.1.Soientun intervalle deR,0un point int´erieur `a, et:R une fonction. On fixe un entier naturel. On dit qu"une fonction est de classesursi elle estfois d´erivable sur, et si sa d´eriv´ee-i`eme est continue sur. Th´eor`eme 4.1.2(Taylor-Young).Supposons quesoit de classesur. Alors, pour toutRtel que0+appartienne `aon peut ´ecrire (0+) =(0) +(0) +2

2!(2)(0) ++!()(0) +()

=0 !()(0) +() o`u()est une fonction qui tend vers0quandtend vers0. 40

D´efinition 4.1.3.La somme?

=0 !()(0) s"appelle le polynˆome de Taylor de`a l"ordreau point0. Par convention, 0! = 1! = 1. Remarque.Une autre fa¸con d"´ecrire un d´eveloppement de Taylor au point0consiste `a poser=0+. Le th´eor`eme de Taylor-Young s"´enonce alors de la fa¸con suivante : si est de classesur, alors pour touton peut ´ecrire =0(0) !()(0) + (0)(0) o`u(0) tend vers 0 quandtend vers0. Exemples.a) La formule de Taylor-Young pour la fonction sin() `a l"ordre 2+ 1 en 0 s"´ecrit sin() =3

3!+55!++ (1)2+1(2+ 1)!+2+1()

En effet, on doit calculer les d´eriv´ees successives de sin() en 0. Nous avons sin(0) = 0sin(0) = cos(0) = 1sin(0) =sin(0) = 0

Plus g´en´eralement, pour toutNnous avons

sin (2)(0) = 0 et sin(2+1)(0) = (1)cos(0) = (1) d"o`u le r´esultat. b) La formule de Taylor-Young pour la fonction`a l"ordreen 0 s"´ecrit = 1 ++2

2+33!++!+()

En effet,est sa propre d´eriv´ee.

Par exemple, poursuffisamment petit, le polynˆome3

3!donne une valeur approch´ee

de sin(). On aimerait connaˆıtre la pr´ecision de cette approximation, c"est-`a-dire contrˆoler

la taille du reste3(). Nous allons d"abord exprimer le reste sous la forme de Lagrange,ce qui constitue une g´en´eralisation du th´eor`eme des accroissements finis. Th´eor`eme 4.1.4(Taylor-Lagrange).Supposons quesoit de classe+1sur. Alors, pour toutRtel que0+appartienne `a, il existe]01[tel que l"on ait (0+) =? =0 !()(0) ++1(+ 1)!(+1)(0+) (notons ici qued´epend de). 41
Exemples.a) Consid´erons `a nouveau la fonction sin(). La formule de Taylor-Lagrange `a l"ordre 3 au voisinage de 0 s"´ecrit sin() =3

3!+44!cos()

avec]01[. Ainsi, on peut dire que3

3!constitue une valeur approch´ee de sin()

avec une erreur inf´erieure ou ´egale `a 4 4!. b) Consid´erons encore. La formule de Taylor-Lagrange `a l"ordre 4 au voisinage de 0 s"´ecrit = 1 ++2

2+33!+44!+55!

Comme la fonctionest croissante, on peut dire que. Ceci permet par exemple de donner une valeur approch´ee de. En effet, nous avons = 1 + 1 +1

2+16+124+1120

avec 3 donc, l"erreur est de l"ordre de3

120=140.

c) Soitun polynˆome de degr´e au plus. Alorsest de classe+1et(+1)= 0. La formule de Taylor-Lagrange `a l"ordreau voisinage de 0 nous dit que, pour toutR =0 !()(0)

En effet, le reste est nul! Ainsi, les coefficients desont donn´es par les d´eriv´ees successives

deen 0. Ce r´esultat peut aussi se d´emontrer par un calcul alg´ebrique (sans recourir `a l"analyse). D´emonstration de la formule de Taylor-Lagrange.Si= 0, c"est vrai. Fixons= 0, pour simplifier les notations, nous posons=0+. Nous cherchons donc `a montrer l"existence d"un r´eelstrictement compris entre0ettel que l"on ait =0(0) !()(0) +(0)+1(+ 1)!(+1)()

On introduit la fonctiond´efinie par

=0() !()()()+1 o`uest un r´eel choisi de telle fa¸con que(0) = 0, c"est-`a-dire : =0(0) !()(0) +(0)+1 42
Il est clair, vu la d´efinition de, que() = 0. Pour d´emontrer le th´eor`eme, il suffit de montrer queest de la forme(n+1)() (+1)!pour un certain. Vu les hypoth`eses, nous pouvons appliquer le th´eor`eme de Rolle pour trouver(stric- tement compris entre0et) tel que() = 0. Calculons. Par la formule de d´erivation d"un produit, nous avons =1()1 =0()!(+1)() +(+ 1)() 1? =0() !(+1)()? =0()!(+1)() +(+ 1)() d"o`u !(+1)() +(+ 1)() (+1)() !+(+ 1)?

L"´egalit´e() = 0 se traduit donc par :

=(+1)() (+ 1)! d"o`u le r´esultat. D´emonstration de la formule de Taylor-Young.On applique la formule de Taylor-Lagrange `a l"ordre1 pour la fonction. Il existe donc]01[ tel que l"on ait (0+) =1? =0 !()(0) +!()(0+)

On pose alors

() =1 !?()(0+)()(0)? Le nombre, bien que d´ependant de, appartient `a ]01[. Nous avons donc lim

0(0+) =0

Comme()est continue en0, on en d´eduit que

lim

0() = 0

43

Enfin, par d´efinition mˆeme de, nous avons

!()(0+) =!()(0) +() d"o`u le r´esultat, en injectant ceci dans la formule de d´epart. Il existe aussi une autre expression du reste, qui constitue une g´en´eralisation du th´eor`eme fondamental du calcul diff´erentiel et int´egral (voir le chapitre suivant). Th´eor`eme 4.1.5(Taylor avec reste int´egral).Supposons quesoit de classe+1sur . Alors, pour toutRtel que0+appartienne `aon a (0+) =? =0 !()(0) ++1!? 1 0 (1)(+1)(0+)d

Remarque.Le reste int´egral admet une autre expression. Plus pr´ecis´ement, on a l"´egalit´e

+1 1 0 (1)(+1)(0+)d=? 0+

0(0+)!(+1)()d

qui d´ecoule tout simplement d"un changement de variable0+. Remarque.Pour certaines fonctions, nous pouvons montrer que le reste tend vers z´ero

quandtend vers l"infini; ces fonctions peuvent ˆetre d´evelopp´ees ens´erie de Taylordans

un voisinage du point0et sont appel´ees desfonction analytiques.

4.2 Op´erations sur les polynˆomes de Taylor

Soientetdeux fonctions de classe. Comment obtenir le polynˆome de Taylor de +, de, de , et caetera, `a partir de ceux deet? Commen¸cons par d´emontrer l"unicit´e du polynˆome de Taylor d"une fonction donn´ee en un point donn´e. Lemme 4.2.1.Soitde classesur, et soit0. Supposons qu"il existe un polynˆomede degr´e au pluset une fonctionqui tend vers0en0, tels que l"on ait (0+) =() +() pour touttel que0+. Alorsest le polynˆome de Taylor de`a l"ordreau point0. 44
D´emonstration.Commeest de classe, et queest un polynˆome, la fonction () est ´egalement de classe. De plus, lespremi`eres d´eriv´ees de() s"annulent en 0. On peut donc ´ecrire, pour tout 01, ()(0) =()(0) D"autre part, la formule de Taylor-Lagrange `a l"ordreen 0 pour le polynˆomenous dit que, pour toutR, =0 !()(0) (le reste ´etant nul comme on l"a vu plus haut). Ainsi =0 !()(0) ce qu"on voulait. Voici comment les op´erations alg´ebriques usuelles se traduisent au niveau des po- lynˆomes de Taylor. Th´eor`eme 4.2.2.Soientetdeux fonctions de classesur, et soit0. Soit (resp.) le polynˆome de Taylor de(resp.) `a l"ordreau point0. Alors (1)le polynˆome de Taylor de+`a l"ordreen0est+ (2)le polynˆome de Taylor de`a l"ordreen0esttronqu´e en degr´e (3)si(0)= 0, alors est de classeau voisinage de0et le polynˆome de Taylor de est le quotient deparselon les puissances croissantes `a l"ordre.

Quelques commentaires :

1)est un polynˆome de degr´e au plus 2, sontronqu´e en degr´eest le polynˆome

obtenu en supprimant tous les termes de degr´e strictement sup´erieur `a. Dans la pratique, ce ne sera mˆeme pas la peine de calculer ces termes...

2) Ladivision selon les puissances croissantesdepar`a l"ordreest d´efinie comme

suit : si(0)= 0, alors il existe un unique couple () de polynˆomes tel que l"on ait () =()() ++1() avec deg() On dit queest le quotient deparselon les puissances croissantes `a l"ordre, et queest le reste. Cette division, contrairement `a la division euclidienne despolynˆomes (que l"on appelle aussi division selon les puissances d´ecroissantes), a pour effet d"augmenter le degr´e du reste, au lieu de le diminuer. Ainsi, il n"y a pas une seule divisionselon les puissances croissantes, il y en a une pour chaque ordre. Plusaugmente, plus le degr´e du quotient et du reste augmentent. 45
Exemples.On ´ecrit Taylor-Young `a l"ordre 3 en 0 pour sin() sin() =3

6+31()

et pour ln(1 +) ln(1 +) =2

2+33+32()

d"o`u l"on d´eduit : a) Taylor-Young `a l"ordre 3 en 0 pour la diff´erence sin()ln(1 +) =2

232+3()

b) Taylor-Young `a l"ordre 3 en 0 pour le produit sin()ln(1 +) = (3

6)(22+33) +3()

=23 2+3() D´emonstration.D"apr`es Taylor-Young, il existe des fonction1et2qui tendent vers 0 en 0 telles que, pour touttel que0+, (0+) =() +1() et (0+) =() +2() En additionnant ces deux expressions, et en appliquant le lemme, le point (1) en d´ecoule. (2) Nous avons ()(0+) = (() +1())(() +2()) =()() +(()2() +1()() +1()2()) =()() +3() o`u3() est une fonction qui tend vers 0 en 0. Il suffit alors d"´ecrire ()() =()() +4() o`u()() est le tronqu´e deen degr´e. Ainsi ()(0+) =()() +(() +3())quotesdbs_dbs33.pdfusesText_39
[PDF] dérivée d'une fonction égale ? 0

[PDF] comment calculer une primitive

[PDF] exercices corriges integrale pdf

[PDF] derivee de arcsin et arccos

[PDF] exercice corrigé fonction exponentielle terminale es

[PDF] dérivée de fonctions

[PDF] dérivée d'une fonction ? deux variables

[PDF] formule de taylor fonction ? plusieurs variables

[PDF] dérivation en chaine plusieurs variables

[PDF] règle de la chaine dérivée partielle

[PDF] développement limité a l'ordre 2 d'une fonction ? 2 variables

[PDF] fonction exponentielle négative

[PDF] cours exponentielle terminale es pdf

[PDF] fonction exponentielle terminale es bac

[PDF] loi exponentielle négative