[PDF] DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S





Previous PDF Next PDF



FONCTION EXPONENTIELLE

Démonstration : On a démontré dans le paragraphe I. que la fonction exponentielle ne s'annule jamais. Or par définition



FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC. Séries S – ES/L – STI2D – STL – ST2S – ST2A – hôtellerie – Mathématiques. FONCTIONS EXPONENTIELLES ET LOGARITHMES.



Fiche technique sur les limites

1 Fonctions élémentaires F. Ind. Paul Milan. 1 sur 3. Terminale ES ... Comparaison de la fonction exponentielle avec la fonction puissance.



Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Calculer la dérivée de la fonction et déterminer la fonction telle que ... 1 dérivable sur et qui ne s'annule.



La fonction exponentielle - Lycée dAdultes

16 oct. 2014 4) Tracer la courbe Cf pour x ? [?2 ; 2 ] dans un repère orthonormal. Unité graphique : 2 cm sur les deux axes. paul milan. 2. Terminale S ...



FICHE DE RÉVISION DU BAC

Séries S – ES/L – STI2D – STL – ST2S – ST2A – hôtellerie – Mathématiques. FONCTIONS EXPONENTIELLES ET LOGARITHMES. 1. LE COURS. [Série – Matière – (Option)].



Exercices de mathématiques pour la classe terminale - 2e partie

attend des exercices mathématiques faits en classe ES-L. 2. ES-L Asie exercice 4. Énoncé originel. Soit la fonction définie sur [0 ; 1] par 



DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S

DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S. SUITES. Propriété : Pour x positif g'(x) = ex ?1? e0 ?1= 0 car la fonction exponentielle est croissante.



Fonctions exponentielles – Exercices

Fonctions exponentielles – Exercices – Terminale ES/L – G. AURIOL Fonctions exponentielles de base ... 7 (Bac 2013



T ES Fonction exponentielle

Le fonction exponentielle notée exp



[PDF] FONCTION EXPONENTIELLE - maths et tiques

FONCTION EXPONENTIELLE I Définition Théorème : Il existe une unique fonction f dérivable sur ? telle que et Démonstration de l'unicité (exigible BAC) :



[PDF] Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujet 1 : Polynésie – septembre 2002 On considère la fonction définie sur par 1 1 1) Etudier la parité de



[PDF] Terminale ES - Fonction exponentielle - Parfenoff org

Fonction exponentielle I) Définition de la fonction exponentielle 1) Définition Nous avons étudié dans la leçon précédente la fonction 



[PDF] LE COURS - FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Séries S – ES/L – STI2D – STL – ST2S – ST2A – hôtellerie – Mathématiques FONCTIONS EXPONENTIELLES ET LOGARITHMES



Fonction exponentielle Cours terminale ES - Mathsbook

Voici un cours complet sur la fonction exponentielle : définitions propriétés études des limites et tracé de cette fonction à connaître sur le bout des doigts 



Fonction exponentielle : Cours PDF à imprimer Maths terminale ES

Téléchargez ce cours de maths Fonction exponentielle au format PDF à imprimer pour en avoir une version papier et l'emporter partout avec vous



Fonction exponentielle cours pdf - etude-generalecom

24 avr 2019 · Fonction exponentielle cours pdf C'est un cours complet et bien détaillé sur la fonction exponentielle (Bac / Terminale) 



Fonctions exponentielles - AlloSchool

10 fév 2022 · Fonctions exponentielles Cours Examens Exercices corrigés pour primaire collège et lycée Notre contenu est conforme au Programme 



La fonction exponentielle - AlloSchool

20 mar 2019 · La fonction exponentielle Cours Examens Exercices corrigés pour primaire collège et lycée Notre contenu est conforme au Programme 



exponentielle - Maths Paris

exponentielle exercices basiques SUJETS NOUVEAU BAC 2021 tsexponentielle11 pdf fonctions continuité dérivabilité équation différentielle

:
DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 1DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S SUITES Propriété : Si q > 1 alors

lim n→+∞ q n

. D1 - Démonstration au programme (exigible BAC) :Prérequis : Pour tout entier naturel n, on a : ()11

n ana+≥+ (inégalité de Bernoulli qui se démontre par récurrence). On suppose que q>1 , alors on peut poser q=a+1 avec a>0 . ()11 n n qana=+≥+ . Or ()lim1 n na car a>0 . Donc par le théorème de comparaison lim n→+∞ q n

. Théorème de comparaison : Soit (un) et (vn) deux suites définies sur ℕ. Si, à partir d'un certain rang,

u n n et lim n→+∞ u n alors lim n→+∞ v n . D2 - Démonstration au programme (exigible BAC) :Soit un nombre réel a. - lim n→+∞ u n , donc l'intervalle a;+∞

contient tous les termes de la suite à partir d'un certain rang que l'on note n1. On a donc pour tout

n≥n 1 aalors la suite (un) est majorée par L. D3 - Démonstration au programme (non exigible BAC) :Démontrons par l'absurde en supposant le contraire, soit:"Il existe un entier p, tel que

u p >L .»- L'intervalle ouvert L-1;u p contient L. Or, par hypothèse, lim n→+∞ u n =L . Donc l'intervalle L-1;u p

contient tous les termes de la suite (un) à partir d'un certain rang (1). - Comme (un) est croissante :

u n ≥u p pour n>p . Donc si n>p , alors u n ∉L-1;u p (2). (1) et (2) sont contradictoires, on en déduit qu'il n'existe pas p ϵ ℕ, tel que u p >L . Et donc la suite (un) est majorée par L.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2Propriétés : - Si une suite croissante est non majorée alors elle tend vers +∞

. - Si une suite décroissante est non minorée alors elle tend vers -∞

. D4 - Démonstration au programme (non exigible BAC) :Soit un réel a. Comme (un) n'est pas majorée, il existe un entier p tel que

u p >a . La suite (un) est croissante donc pour tout n>p , on a u n ≥u p . Donc pour tout n>p , on a u n >a

. Et donc à partir d'un certain rang p, tous les termes de la suite appartiennent à l'intervalle

a;+∞ . On en déduit que lim n→+∞ u n . FONCTIONS Théorème : Il existe une unique fonction f dérivable sur ℝ telle que f'=f et f(0)=1

. D5 - Démonstration de l'unicité au programme (exigible BAC) :- Démontrons que f ne s'annule pas sur ℝ. Soit la fonction h définie sur ℝ par

h(x)=f(x)f(-x) . Pour tout réel x, on a : h'(x)=f'(x)f(-x)+f(x)-f'(-x) =f'(x)f(-x)-f(x)f'(-x) =f(x)f(-x)-f(x)f(-x) =0

La fonction h est donc constante. Comme

h(0)=f(0)f(0)=1 , on a pour tout réel x : f(x)f(-x)=1 . La fonction f ne peut donc pas s'annuler. - Supposons qu'il existe une fonction g telle que g'=g et g(0)=1 . Comme f ne s'annule pas, on pose k(x)= g(x) f(x) k'(x)= g'(x)f(x)-g(x)f'(x) f(x) 2 g(x)f(x)-g(x)f(x) f(x) 2 =0 . k est donc une fonction constante. Or k(0)= g(0) f(0) 1 1 =1 donc pour tout x : k(x)=1 . Et donc f(x)=g(x) . L'unicité de f est donc vérifiée. Propriétés : lim x→-∞ e x =0 et lim x→+∞ e x D6 - Démonstrations au programme (exigible BAC) :- Soit la fonction g définie par g(x)=e x -x YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 3Pour x positif, g'(x)=e x -1≥e 0 -1=0 car la fonction exponentielle est croissante. Donc la fonction g est croissante sur

0;+∞

. On dresse ainsi le tableau de variations : x 0 +∞ g'(x)

0 +

g(x)

1 Comme

g(0)=1 , on a pour tout x, g(x)≥1 . Et donc g(x)=e x -x≥0 , soit e x ≥x . D'après le théorème de comparaison des limites, on en déduit que lim x→+∞ e x car lim x→+∞ x=+∞ lim x→-∞ e x =lim

X→+∞

e -X =lim

X→+∞

1 e X =0

. Théorème : Soit f une fonction continue et positive sur un intervalle [a ; b]. La fonction F définie sur [a ; b] par

F(x)=f(t)dt

a x

est dérivable sur [a ; b] et sa dérivée est la fonction f. D7 - Démonstration dans le cas où f est strictement croissante (non exigible BAC) : - On considère deux réels x et x+h de l'intervalle [a ; b] avec

h>0 . On veut démontrer que lim h→0

F(x+h)-F(x)

h =f(x)

F(x+h)-F(x)=f(x)dx-f(x)

a x dx a x+h =f(x) x x+h dx

. On a représenté ci-contre, la courbe de la fonction f (en vert). Cette différence est égale à l'aire de la surface colorée en rouge. Elle est comprise entre les aires des rectangles ABFE et ABHG. Or,

AireABFE

=h×f(x) et

AireABHG

=h×f(x+h) . Comme f est croissante sur [a ; b], on a : h×f(x)Puisque h>0 , on a : f(x)<

F(x+h)-F(x)

h F(x+h)-F(x) h =f(x) . - Dans le cas où h<0 , la démonstration est analogue (les encadrements sont inversés). On en déduit que

F'(x)=f(x)

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 4Propriété : Toute fonction continue sur un intervalle admet des primitives sur cet intervalle. D8 - Démonstration dans le cas d'une fonction admettant un minimum (non exigible BAC) : Soit f une fonction continue sur un intervalle [a ; b] admettant m comme minimum. - Si m ≥

0 : La fonction f est continue et positive sur [a ; b]. Alors la fonction

F(x)=f(t)dt

a x est dérivable sur [a ; b] et sa dérivée est la fonction f. Comme F'=f , on en déduit que f admet bien une primitive sur [a ; b]. - Si m < 0 : On pose g(x)=f(x)-m . La fonction g est continue et positive sur [a ; b]. Alors la fonction

G(x)=g(t)dt

a x

est dérivable sur [a ; b] et sa dérivée est la fonction g. Soit la fonction F définie par

F(x)=G(x)+mx

alorsquotesdbs_dbs33.pdfusesText_39