[PDF] MATHÉMATIQUES 9E





Previous PDF Next PDF



Polycopié dexercices et examens résolus: Mécaniques des

Ces exercices couvrent les sept chapitres du polycopié de cours de la mécanique des systèmes indéformables : Calcul vectoriel-Torseurs. Cinématique du solide



Polycopié dexercices et examens résolus: Mécanique du point

Calculer les coordonnées du point situé au quart (à partir de A ) du segment [AB]. c. Déterminer D tel que ABCD soit un parallélogramme. d. Les vecteurs et 



trigonometrie-exercices-corriges.pdf

Déterminer les valeurs exactes du périmètre et de l'aire de ce trapèze. Exercice n°5. Une tour est protégée par un large fossé. En se situant en A 



FINALE FASCICULE MATHS 3EME ok

d'exercices de Mathématiques. Mathématiques Exprimer l'aire du trapèze ABND en fonction de x. ... EXAMEN DU B.F.E.M. - SESSION DE JUILLET 1990.



Mise en page 1

d'exercices corrigés pour leur permettre de s'exercer en vue des examens scolaires. Le trapèze: tracé calcul des dimensions et de la surface;.



Aires et périmètres : exercices de maths en PDF en cinquieme à

Exercice 18 : aire de figures composées de disque. Exercice 19 : calculer l'aire du parallélogramme. Exercice 20 : aire de la figure bleue.



MATHÉMATIQUES 9E

???EXERCICE 147. Exprimer par une formule l'aire de la surface ombrée. b a. A. B. C. D. E. F. ACDF est un parallélogramme. BCEF est un carré.



Mathématiques Annales 2015

EXERCICES ÉLABORÉS À PARTIR DES CONCOURS BLANCS ET EXAMENS PARTIE A : calcul de l'aire d'un polygone de Pick sur un exemple. Calculer l'aire du polygone ...



La dermatomyosite

www.orpha.net/data/patho/Pub/fr/Dermatomyosite-FRfrPub701.pdf Au cours des maladies auto-immunes le système immunitaire produit des anticorps dirigés.



TRANSLATION ET VECTEURS

http://www.maths-et-tiques.fr/telech/trans_gr1.pdf Construire l'image B'C'D'E' du trapèze BCDE par la translation t. Exercices conseillés En devoir.

1

CYCLE D'ORIENTATION DE L'ENSEIGNEMENT SECONDAIRE

MATHÉMATIQUES

9 E

S, L, M, GnivA - NA

DÉPARTEMENT DE L'INSTRUCTION PUBLIQUE

GENÈVE 1995

11.038.48

2

TABLE DES MATIÈRES3

Table des matières

1 Les ensembles de nombres 9

Théorie9

1.1 Lesensemblesdenombres............................... 9

1.1.1 L"ENSEMBLEN................................ 9

1.1.2 DENVERSVZ................................ 10

1.1.3 DEZVERSQ................................. 10

1.1.4 DEQVERSR................................. 11

1.1.5 RÉSUMÉ DES PROPRIÉTÉS DES OPÉRATIONS DANSR........ 12

1.2 LESPUISSANCES................................... 12

1.2.1 RAPPEL DE 8

e :PUISSANCESD"EXPOSANTPOSITIF.......... 12

1.2.2 PROPRIÉTÉS DES PUISSANCES D"EXPOSANT POSITIF ........ 13

1.2.3 PUISSANCESD"EXPOSANTNÉGATIFOUNUL ............. 15

1.2.4 LESPUISSANCESDE10........................... 16

1.3 RACINESCARRÉESETRACINESCUBIQUES................... 17

1.3.1 RAPPEL DE 8

e :RACINESCARRÉES.................... 17

1.3.2 RACINESCUBIQUES............................. 17

1.3.3 RÈGLESDECALCUL ............................ 17

Exercices écrits 19

Exercices récapitulatifs 34

2 Calcul littéral 37

Théorie37

2.1 RAPPEL DE 8

e : DÉVELOPPER UN PRODUIT . . . . ............... 37

2.2 LESSIMPLIFICATIONSD"ÉCRITURE ....................... 37

2.3 MONÔMES ET POLYNÔMES . . .......................... 38

2.3.1 LES MONÔMES................................ 38

2.3.2 OPÉRATIONS AVEC DES MONÔMES . . . . ............... 39

2.3.3 LES POLYNÔMES . . . . .......................... 41

2.3.4 OPÉRATIONS AVEC DES POLYNÔMES . . . ............... 41

2.4 LESIDENTITÉSREMARQUABLES......................... 45

2.5 LAFACTORISATION................................. 47

2.6 LES FRACTIONS RATIONNELLES......................... 48

2.6.1 SIMPLIFICATION DE FRACTIONS RATIONNELLES . . . ........ 48

2.6.2 MULTIPLICATION DE FRACTIONS RATIONNELLES . . ........ 49

2.6.3 DIVISION DE FRACTIONS RATIONNELLES ............... 49

4TABLE DES MATIÈRES

2.7 LES FRACTIONS RATIONNELLES (Section S - NA) . ............... 50

2.7.1 FRACTIONS RATIONNELLES ÉGALES . . . ............... 50

2.7.2 DÉNOMINATEURSCOMMUNS....................... 50

2.7.3 ADDITION ET SOUSTRACTION DE FRACTIONS RATIONNELLES . . 51

Exercices écrits 54

Exercices récapitulatifs 88

Exercices pour les scientifiques 91

Exercices de développement 94

3 Les applications 103

Théorie103

3.1 RAPPELSETNOTATIONS .............................. 103

3.1.1 LEREPÉRAGED"UNPOINT ........................ 103

3.2 UN EXEMPLE: UNE APPLICATION ET SA REPRÉSENTATION GRAPHIQUE . 104

3.3 LADROITE ...................................... 106

3.3.1 L"ÉQUATIOND"UNEDROITE........................ 106

3.3.2 LAPENTED"UNEDROITE ......................... 107

3.3.3 L"ORDONNÉE À L"ORIGINE . . ...................... 110

3.4 LESAPPLICATIONSAFFINES............................ 111

3.5 EXERCICESRÉSOLUS................................ 112

Exercices écrits 115

Exercices de développement 122

4 Les équations 125

Théorie125

4.1 INTRODUCTION . . ................................. 125

4.2 LESÉQUATIONS ................................... 125

4.3 LESSOLUTIONSD"UNEÉQUATION........................ 126

4.4 L"ÉQUATION DU 1

er DEGRÉ À UNE INCONNUE . . ............... 127

4.4.1 DEUX PROPRIÉTÉS DES ÉQUATIONS . . . . ............... 127

4.4.2 ÉQUATIONSÉQUIVALENTES........................ 127

4.4.3 LA RÉSOLUTION D"UNE ÉQUATION DU 1

er

DEGRÉ .......... 127

4.4.4 DEUX ÉQUATIONS PARTICULIÈRES DU 1

er

DEGRÉ .......... 130

4.4.5 ÉQUATIONSPARTICULIÈRESDEDEGRÉSUPÉRIEURÀ1....... 130

4.5 LAMISEENÉQUATIOND"UNPROBLÈME.................... 132

4.6 LATRANSFORMATIOND"UNEFORMULE.................... 133

4.7 LES ÉQUATIONS LITTÉRALES (Section S - NA) . . . ............... 134

4.7.1 EXEMPLES DE RÉSOLUTION D"ÉQUATIONS LITTÉRALES . . . . . . 134

4.7.2 DISCUSSION DES SOLUTIONS D"UNE ÉQUATION LITTÉRALE DU 1

er

DEGRÉ135

Exercices écrits 137

Exercices écrits (section S) 162

TABLE DES MATIÈRES5

Exercice de développement 166

5 Les systèmes d"équations du 1

er degré 173

Théorie173

5.1 L"ÉQUATION DU 1

er DEGRÉ À 2 INCONNUES . . . ............... 173

5.2 LES SYSTÈMES D"ÉQUATION DU 1

er

DEGRÉ À 2 INCONNUES ........ 174

5.2.1 RÉSOLUTIONGRAPHIQUE......................... 175

5.2.2 RÉSOLUTIONALGÉBRIQUE........................ 176

5.2.3 DEUXEXEMPLES .............................. 177

5.3 LA FORME GÉNÉRALE D"UN SYSTÈME DE 2 ÉQUATIONS DU 1

er

DEGRÉ À 2 INCONNUES1

5.4 LAMISEENÉQUATIONSD"UNPROBLÈME ................... 180

5.5 LES SYSTÈMES D"ÉQUATIONS DU 1

er DEGRÉ À PLUS DE 2 INCONNUES (Section S - NA)181

Exercices écrits 184

Exercices écrits (Section S-NA) 191

Exercices de développements 196

6 Rapports et proportions 199

Théorie199

6.1 RAPPORTSETPROPORTIONS ........................... 199

6.1.1 LERAPPORTDEDEUXNOMBRES .................... 199

6.1.2 LE RAPPORT DE DEUX GRANDEURS DE MÊME NATURE....... 199

6.2 PROPORTIONS .................................... 200

6.3 GRANDEURS DIRECTEMENT PROPORTIONNELLES.............. 201

6.3.1 RAPPEL DE 8

e :LEFACTEURDEPROPORTIONNALITÉ ........ 201

6.3.2 PROPORTIONNALITÉETAPPLICATIONSLINÉAIRES ......... 203

6.4 GRANDEURS INVERSEMENT PROPORTIONNELLES.............. 204

6.5 RAPPEL DE 8

e : EXEMPLES DE GRANDEURS PROPORTIONNELLES . . . . . 205

6.5.1 LETAUXD"INTÉRÊT ............................ 205

6.5.2 LAPENTED"UNEROUTE.......................... 205

6.5.3 L"ÉCHELLE D"UNE CARTE OU D"UN PLAN ............... 205

6.5.4 LA LONGUEUR D"UN ARC DE CERCLE, L"AIRE D"UN SECTEUR . . . 206

Exercices écrits 208

Exercices de développements 216

7 Les inéquations du 1

er degré à une inconnue 219

Théorie219

7.1 INTRODUCTION . . ................................. 219

7.2 LESSIGNESD"INÉGALITÉ ............................. 219

7.3 LES INÉQUATIONS du 1

er

DEGRÉ À UNE INCONNUE.............. 220

7.4 LES PROPRIÉTÉS DES INÉGALITÉS . . ...................... 221

7.5 LA RÉSOLUTION D"UNE INÉQUATION DU 1

er

DEGRÉ À UNE INCONNUE . . 222

7.6 DEUXINÉQUATIONSPARTICULIÈRES ...................... 223

7.7 LES SYSTÈMES D"INÉQUATIONS À UNE INCONNUE.............. 223

6TABLE DES MATIÈRES

7.8 LES DEMI-DROITES ET LES INTERVALLES . . . . . ............... 224

Exercices écrits 227

Exercices de développements 236

8 Le théorème de Pythagore 237

Théorie237

8.1 INTRODUCTION . . ................................. 237

8.2 L"ÉNONCÉ DU THÉORÈME DE PYTHAGORE| . . . ............... 238

8.3 FORMULATION GÉOMÉTRIQUE DU THÉORÈME DE PYTHAGORE . . . . . . 238

8.4 EXEMPLESNUMÉRIQUES ............................. 239

8.5 UNEDÉMONSTRATIONDUTHÉORÈMEDEPYTHAGORE........... 240

8.6 LARÉCIPROQUEDUTHÉORÈMEDEPYTHAGORE............... 241

Exercices écrits 242

Exercices de développements 248

9Lesvolumes251

Théorie251

9.1 LESUNITÉSDEMESURE .............................. 251

9.2 FORMULAIRE..................................... 253

9.2.1 LONGUEURS ET AIRES . .......................... 253

9.2.2 VOLUMES................................... 254

9.3 LAPYRAMIDEETLECÔNE ............................ 255

9.3.1 PYRAMIDERÉGULIÈREETCÔNEDROIT ................ 255

9.3.2 VOLUMEDELAPYRAMIDEETVOLUMEDUCÔNE.......... 256

9.4 LASPHÈRE ...................................... 257

Exercices écrits 259

Exercices de développements 264

10 Les applications du plan dans lui-même 267

Théorie267

10.1LESROTATIONS.................................... 267

10.1.1UNEXEMPLE................................. 267

10.1.2GÉNÉRALISATION.............................. 268

10.1.3 PROPRIÉTÉS DES ROTATIONS . ...................... 268

10.2LESHOMOTHÉTIES ................................. 269

10.2.1UNEXEMPLE................................. 269

10.2.2GÉNÉRALISATION.............................. 270

10.2.3 HOMOTHÉTIE: AGRANDISSEMENT OU RÉDUCTION . ........ 270

10.2.4 PROPRIÉTÉS DES HOMOTHÉTIES..................... 271

10.3 TABLEAU RÉCAPITULATIF DES APPLICATIONS DU PLAN DANS LUI-MÊME 273

Exercices écrits 274

TABLE DES MATIÈRES7

11 Le théorème de Thalès 285

Théorie285

11.1LESANGLES(Rappel) ................................ 285

11.2LETHÉORÈMEDETHALÈS............................. 287

11.2.1 LE THÉORÈME DE THALÈS DANS LE TRIANGLE . . . . ........ 287

11.2.2UNECONSÉQUENCEDUTHÉORÈMEDETHALÈS........... 288

11.2.3 LE THÉORÈME DE THALÈS: UNE AUTRE FORMULATION . . . . . . 289

11.3TRIANGLESSEMBLABLES............................. 290

11.3.1SOMMETSCORRESPONDANTS ...................... 290

11.3.2ANGLESCORRESPONDANTS ....................... 290

11.3.3CÔTÉSCORRESPONDANTS ........................ 291

11.3.4TRIANGLESSEMBLABLES......................... 291

11.4 RÉSOLUTION D"UN PROBLÈME À L"AIDE DE TRIANGLES SEMBLABLES . 293

Exercices écrits 295

Exercices de développement 309

12 Le cercle313

Théorie313

12.1QUELQUESDÉFINITIONS.............................. 313

12.2 LE THÉORÈME DE L"ANGLE INSCRIT . ...................... 315

12.3 CONSÉQUENCE DU THÉORÈME DE L"ANGLE INSCRIT . . . . ........ 317

12.4 LE THÉORÈME DE L"ANGLE DROIT . . ...................... 318

Exercices écrits 319

8TABLE DES MATIÈRES

9

Chapitre 1

Les ensembles de nombres

Théorie

1.1 Les ensembles de nombres

1.1.1 L"ENSEMBLEN

Comme dans le manuel de 8

e , nous utiliserons les notations: N={0;1;2;3;4;5;...}(Nest appelé l"ensemble des entiers naturels, ou encore l"en- semble des nombres naturels) N ={1;2;3;4;5;...}(Nest appelé l"ensemble des entiers positifs, ou encore l"en- semble des nombres naturels positifs). Chaque fois qu"on additionne deux entiers naturels, leur somme est un entier naturel. Par exemple, 7?N 9?N

7+9=16 et 16?N.

Mais si on soustrait un entier naturel d"un autre, leurdifférence n"est pas forcément un entier naturel.

Par exemple,

7?N 9?N mais 7-9=-2et-2??N.

10CHAPITRE 1. LES ENSEMBLES DE NOMBRES

1.1.2 DENVERSVZ

L"exemple qu"on vient de voir ( 7-9=-2) montre que la soustraction n"est pas toujours possible dansN. On"étend»alorsNà l"ensemble desentiers relatifs, qu"on désigne parZ:

Z={...;-2;-1;0;+1;+2;+3;...}.

On a alors:N

?N?Z. La somme, le produit, la différence de deux entiers relatifs est encore un entier relatif.

Mais si on divise un entier relatif par un autre, leur quotient n"est pas forcément un entier relatif. Par

exemple, -3?Z +4?Z mais(-3):(+4)=-0,75 et-0,75??Z.

1.1.3 DEZVERSQ

L"exemple(-3):(+4)=-0,75 montre que la division n"est pas toujours possible dansZ. On"étend»alorsZà l"ensemble desnombres rationnels, qu"on désigne parQ. Unnombre rationnelest le quotient de deux entiers. On peut l"écrire sous la forme d"une fractiona b(avecaetbentiers etb?=0). On peut aussi écrire un nombre rationnel en base 10.

Lorsqu"on écrit un nombre rationnel en base 10, son écriture est finie, ou illimitée et périodique.

Et tout nombre dont l"écriture en base 10 est finie,ou illimitée et périodique est un nombre rationnel

(c"est-à-dire qu"il peut aussi s"écrire sous la forme d"une fraction). Voici quelques exemples de nombres avec une écriture finie en base 10: 0,3=3

100,6=610=350,5=510=120,75=75100=34

(Rappel:Un nombre qui a une écriture finie en base 10 s"appelle unnombre décimal.) Et voici quelques exemples de nombres avec une écriture illimitée et périodique en base 10: 0, 3=1 30,
6=2 30,1
6=1 60,
36=4
11 (en surlignant des chiffres, on indique qu"ils se répètentindéfiniment).

Exercices 1 à 6

Remarques

1) On a:N?Z?Q.

1.1. LES ENSEMBLES DE NOMBRES11

2) Dans la vie courante, une écriture comme 5

quotesdbs_dbs45.pdfusesText_45
[PDF] AIRE TRIANGLE 2nde Mathématiques

[PDF] aire triangle determinant PDF Cours,Exercices ,Examens

[PDF] aire triangle intégrale PDF Cours,Exercices ,Examens

[PDF] Aire triangle isocèle rectangle 1ère Mathématiques

[PDF] aire triangle rectangle PDF Cours,Exercices ,Examens

[PDF] Aire triangle, repère 2nde Mathématiques

[PDF] aire urbaine de toulouse 3eme PDF Cours,Exercices ,Examens

[PDF] aire urbaine lille PDF Cours,Exercices ,Examens

[PDF] aire urbaine toulouse PDF Cours,Exercices ,Examens

[PDF] Aire, notion de fonction , tableur 3ème Mathématiques

[PDF] aire, périmètre/pourcentage 6ème Mathématiques

[PDF] Aire, prisme 2nde Mathématiques

[PDF] Aire, volume et théorème de Pythagore 4ème Mathématiques

[PDF] Aire/volume

[PDF] Aires 4ème Mathématiques