[PDF] Cours de probabilités et statistiques





Previous PDF Next PDF



Exercices sur les probabilités Terminale Pro

(D'après sujet de Bac Pro MSMA Session 2006) 1) a) Ouvrir le fichier exercice-planche-galton-probabilite-terminale-pro.xlsx choisir.



SIMPLYCOURS

Exercices de Probabilités. Lycée Professionnel Charles Jully. Année Scolaire 2 012 – 2 013. Terminale Bac Pro Industries des Procédés. Monsieur Boileau.



MON EXERCICE DE PROBABILITE Niveau concerné : Terminale

Créer votre propre exercice de probabilité en vous inspirant des exercices « classiques » du baccalauréat. Soyez inventifs !



EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES. Calculer la probabilité d'un événement. Exercice n°1: Un sachet contient 2 bonbons à la menthe 3 à l'orange et 5 au 



PROBABILITÉS

Probabilités – Terminale S. 1. PROBABILITÉS Exercice n°3 : avec une pièce ... Les permutations de { a b



Terminale S - Probabilités Exercices corrigés

Probabilités exercices corrigés. Terminale S. Probabilités. Exercices corrigés. 1. Combinatoire avec démonstration. 2. Rangements. 3. Calcul d'événements 1.



PROBABILITES – EXERCICES CORRIGES

Exercice n°17. Dans une académie les élèves candidats au baccalauréat série ES se répartissent en 2003 selon les trois enseignements de spécialité : 



Cours de probabilités et statistiques

Une pro- babilité sur ? est une application définie sur l'ensemble des Exercice 2 – Soit P une probabilité sur un ensemble ? et deux événements A et B.



Exercices Corrigés Statistique et Probabilités

Tracer le diagramme en bâtons et la boite à moustaches de cette distribution. Correction de l'exercice 2 a. Tableau statistique. X ni fi. Fi xi*fi xi.



Exercice probabilité terminale bac pro corrigé

Exercice probabilité terminale bac pro corrigé En 1ère Bac Pro : 1 CCF en maths Activités - Cours Exercices Evaluations Cours statistique et ...



Exercices sur les probabilités Terminale Pro - maths-sciencesfr

1) a) Ouvrir le fichier exercice-planche-galton-probabilite-terminale-pro xlsx choisir l’onglet graphique et comparer les résultats obtenus pour 10 100 et 1 000 lancers b) À partir des résultats obtenus pour 1 000 lancers donner une estimation de la probabilité



Exercices sur les probabilités Terminale Pro - maths-sciencesfr

1) Calculer p(A) la probabilité d’être adhérent 2) Calculer p(B) la probabilité d’être une femme 3) On considère l’évènement « Être un adhérent ou une femme » a) Cocher la probabilité correspondant à cet évènement : p(A B) p(A + B) p(A B) b) Calculer la probabilité de cet évènement



Exercices de Probabilités - SIMPLYCOURS

Exercices de Probabilités Lycée Professionnel Charles Jully Année Scolaire 2 012 – 2 013 Terminale Bac Pro Industries des Procédés Monsieur Boileau 1 Exercice n°1 : Sujet de CCF 2 012 Un disquaire propose dans un de ses rayons un choix entre 1 365 disques de catégories Rap Soul et Métal



Searches related to exercice probabilité terminale bac pro PDF

Une probabilité est un nombre compris entre 0 et 1 Un évènement dont la probabilité est nulle est un évènement impossible Un évènement dont la probabilité est égale à 1 est un évènement certains La somme des probabilités de tous les évènements élémentaires est égale à 1 Exemple 3) Equiprobabilité Définition

Quels sont les notions de probabilité?

5 6 II) Notions de probabilités 1) Définition Lorsqu’on effectue un très grand nombre de fois une expérience aléatoire, la fréquence de réalisation d’un évènement se rapproche d’une « fréquence théorique » appelée probabilité. Notation Soit A un évènement, on note p(A) la probabilité que l’évènement A se réalise.

Qu'est-ce que la probabilité?

2) Propriétés Une probabilité est un nombre compris entre 0 et 1 Un évènement dont la probabilité est nulle est un évènement impossible. Un évènement dont la probabilité est égale à 1 est un évènement certains. La somme des probabilités de tous les évènements élémentaires est égale à 1 Exemple 3) Equiprobabilité Définition

Comment calculer la probabilité d’un événement ?

Calculer la probabilité d’un événement contraire Calculer la probabilité de la réunion d’événements incompatibles. Utiliser la formule reliant la probabilité de A?B et de A?B . Cours TP - cours probabilités(Word de 180 ko) Cours et activités flash et calc en introduction aux probabilités.

Quelle est la somme des probabilités de tous les évènements élémentaires?

La somme des probabilités de tous les évènements élémentaires est égale à 1 Exemple 3) Equiprobabilité Définition Lorsque tous les évènements élémentaires ont la même probabilité d’être réalisées, on dit qu’il s’agit d’une situation d’équiprobabilité.

Cours de probabilités et statistiques

Stage ATSM - Ao^ut 2010

Cours de probabilit

´es et statistiques

A. Perrut

contact : Anne.Perrut@univ-lyon1.fr 2

Table des matiµeres

1 Le modµele probabiliste 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Trois autres lois discrµetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Loi d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 La loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fonction d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Intervalles de con¯ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3

4TABLE DES MATIµERES

5 Tests statistiques 47

5.1 Tests d'hypothµeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Test d'ajustement du chi-deux . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Tables statistiques 61

C.1 Variable quantitative discrµete . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2 Variable quantitative continue . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3 Variable qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapitre 1

Le modµele probabiliste

1.1 Introduction

Exemples :

- l'enfant µa na^³tre sera une ¯lle, - Proportion :

P(A) =3

6 = 1=2. Alors

P(¯lle) = limn!+1k

n n mais cette limite a-t-elle un sens? - Opinion : pour que l'OL soit championne de France? Dans ce cas, on ne peut pas rejouer le m^eme subjectif. 5

6CHAPITRE 1. LE MODµELE PROBABILISTE

Exemples :

\Lyon ne gagne pas". chi®re pair", ieA=f2;4;6g. jcelui du second.

B: \on obtient pile au deuxiµeme lancer" est

B=f(f;p;f);(f;p;p);(p;p;f);(p;p;p)g

le nombre de \face" obtenus. Alors, =f0;1;2;3g. Le modµele est beaucoup plus simple, notations vocabulaire ensembliste vocabulaire probabiliste ensemble plein ensemble vide A sous-ensemble de !2A !appartient µaA

A½B

Ainclus dansB

AimpliqueB

A[B AouB A\B intersection deAetB AetB A cou A A\B=;

AetBdisjoints

AetBincompatibles

Exemple : soit =f0;1;2g. ConstruisonsP().

P() =n

;;f0g;f1g;f2g;f0;1g;f0;2g;f1;2g;o telle que : -P(A) =X -P() =X !2P(!) = 1

0.95 :Ava trµes probablement se produire.

4.0 : incorrect.

-2 : incorrect.

0.5 : une chance sur deux.

8CHAPITRE 1. LE MODµELE PROBABILISTE

faire quelques calculs :

1) SiAetBsont incompatibles,P(A[B) =P(A) +P(B).

2)P(Ac) = 1¡P(A).

3)P(;) = 0.

5)P(A[B) =P(A) +P(B)¡P(A\B).

2) CommeAetAcsont incompatibles,1 =P() =P(A[Ac) =P(A) +P(Ac).

3)P(;) = 1¡P(;c) = 1¡P() = 0.

P i2NA i´ =X i2NP(Ai) - axiome 3 :P() = 1

1 =P() =X

!2P(!) =X !2p=p£card()

D'oµup=P(!) =1

card()

P(A) =X

!2AP(!) =card(A) card() dire : - choisir, par

P(BjA) =P(A\B)

P(A) Utilisation 2 : QuandP(BjA)etP(A)sont faciles µa trouver, on peut obtenirP(A\B). Exemple 6Une urne contientrboules rouges etvboules vertes. On en tire deux, l'une =frouge;verteg £ frouge;verteg rouge".

P(A\B) =P(BjA)P(A) =r¡1

r+v¡1¢r r+v

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

10CHAPITRE 1. LE MODµELE PROBABILISTE

preuve : CommeA[Ac= ,P(B) =P(B\(A[Ac)) =P((B\A)[(B\Ac)). OrB\A

P(B) =P(B\A) +P(B\Ac)

On garde le m^eme formalisme.

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

r¡1 r+v¡1¢r r+v+r r+v¡1¢v r+v =r r+v (i)[i2IAi= (ii) lesAisont deux µa deux incompatibles : pour tousi6=j,Ai\Aj=;.

P(B) =X

i2IP(BjAi)P(Ai) dans l'ordre chronologique. Nous allons maintenant voir une formule µa remonter le temps...

1etP(B)>0. Alors,

P(AjB) =P(BjA)P(A)

P(BjA)P(A) +P(BjAc)P(Ac)

preuve :

P(AjB) =P(A\B)

P(B)=P(BjA)P(A)

P(B) i2I,

P(AijB) =P(BjAi)P(Ai)

P j2IP(BjAj)P(Aj) bleaux sur informatique. Les tableaux deAcomportent des fautes dans 5,2% des cas et ceux deBdans 6,7% des cas. On prend un tableau au hasard. Il comporte des fautes. T T

F=\ le tableau comporte des fautes".

P(TAjF) =P(FjTA)P(TA)

P(FjTA)P(TA) +P(FjTB)P(TB)

P(A\B) =P(A)P(B)

P(BjA) =P(B)()P(AjB) =P(A)()P(A\B) =P(A)P(B)

Proposition 14Soit =E£FoµuEest de cardinalnetFde cardinalp. Supposons que

P(!) =P((x;y)) =1

card() =1 np =PE(fxg)PF(fyg) =fP;Fg £ f1;:::;6g

12CHAPITRE 1. LE MODµELE PROBABILISTE

8!2; P(!) =1

card() = 1=12 P N³ (!1;:::;!N)´ =P(!1)¢¢¢P(!N) surN. Pourtant, le nombre de combinaisons dont la somme fait 12 est le m^eme que le nombre de combinaisons dont la somme fait 11. Alors?

1.6 Exercices

3) On tire trois cartes dans un jeu .

suppose que

P(A[B) = 7=8; P(A\B) = 1=4; P(A) = 3=8:

CalculerP(B),P(A\Bc),P(B\Ac).

ros impairs ont chacun la m^eme chance d'appara^³tre, chance qui est deux fois plus grande hasard, et l'on observe que les quatre places libres se suivent. Est-ce surprenant?

1.6. EXERCICES13

Exercice 6 {SoientM1,M2,M3trois personnes. La premiµereM1dispose d'une infor- la transmet µaM3. Malheureusement, µa chaque fois que l'information est transmise, il y a le bon message? Et siM3transmet l'information dont il dispose µa une quatriµeme personneM4, quelle est elle re»coit un vaccin? daire? Exercice 8 |Dans une usine, la machine A fabrique 60% des piµeces, dont 2% sont C? Exercice 9 |Dans une jardinerie : 25% des plantes ont moins d'un an, 60% ont de 1 µa 2 ans, 25% ont des °eurs jaunes, 60% ont des °eurs roses, 15% ont des °eurs jaunes et moins d'un an, 3% ont plus de 2 ans et n'ont ni °eurs jaunes, ni °eurs roses. 15% de celles qui ont de 1 µa 2 ans, ont des °eurs jaunes, 15% de celles qui ont de 1 µa 2 ans, n'ont ni

°eurs jaunes ni °eurs roses. On suppose que les °eurs ne peuvent pas ^etre µa la fois jaunes

et roses. On choisit une plante au hasard dans cette jardinerie.

14CHAPITRE 1. LE MODµELE PROBABILISTE

Exercice 10 |Deux chau®eurs de bus se relaient sur la m^eme ligne. Lors d'une grµeve, le premier a60%de chances de faire grµeve et le second80%. Pendant la prochaine grµeve, Exercice 11 |Une loterie comporte 500 billets dont deux seulement sont gagnants.

Chapitre 2

PPP PPF PFP FPP FFP FPF PFF FFF

valeur deX

3 2 2 2 1 1 1 0

k(valeur prise parX)

3 2 1 0

fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg k(X=k) = 15 elle est ditecontinue(exemples : hauteur d'un arbre, distance de freinage d'une voiture souvent une formule, plut^ot qu'une liste. [X= 3] [X= 2] [X= 1] [X= 0] fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg

1/8 3/8 3/8 1/8

F(x) =P[X·x]

Exemple :Xest le nombre de Face quand on lance trois fois une piµece. On a vu que la loi deXest P[X= 0] = 1=8; P[X= 1] =P[X= 2] = 3=8; P[X= 3] = 1=8

D'oµu,

F(x) =8

>>>>>:0six <0;

1=8si0·x <1;

4=8si1·x <2;

7=8si2·x <3;

1six¸3

1)Fest croissante,

3) lim x! ¡1F(x) = 0;limx!+1F(x) = 1

E[X] =X

kkP[X=k] oµu on somme sur toutes les valeurskque peut prendreX.

E[g(X)] =X

kg(k)P[X=k] preuve : observons queg(X) =yssiX=xavecg(x) =y. Ainsi,

P(g(X) =y) =X

x:g(x)=yP(X=x)

E(Y) =X

yyP(Y=y) =X yX x:g(x)=yg(x)P(X=x) =X xg(x)P(X=x)

Var(X) =Eh

(X¡E[X])2i =X k(k¡E[X])2P[X=k] =E[X2]¡E[X]2 k2X()jkjP(X=k)<1 sa valeur moyenneE[X]. Exemple 18: nous avons la loi du nombreXde PILE quand on lance trois fois une piµece.

E[X] =3X

k=0kP[X=k] = 3¢1 8 + 2¢3 8 + 1¢3 8 + 0¢1 8 =12 8 =3 2

Var(X) =E[X2]¡E[X]2=3X

k=0k

2P[X=k]¡E[X]2

= 3

2¢1

8 + 22¢3 8 + 12¢3 8 + 02¢1 8

¡µ3

2 2 3 4 nbr de PILE [X= 3] [X= 2] [X= 1] [X= 0]

0.125 0.375 0.375 0.125

0.2 0.6 0.1 0.1

partir de quelques observations.

P[X=i;Y=j] =P[X=i]P[Y=j]

P[(X;Y) = (i;j)] =P[X=i;Y=j].

touti2X(),

P[X=i] =X

j2Y()P[X=ijY=j]P[Y=j]

SoitZ=X+Y. Quelle est la loi deZ?

valeur que prendX, la valeur que prendYet la valeur deZ. XnY

1 2 3 4 5 6

1

2 3 4 5 6 7

2

3 4 5 6 7 8

3

4 5 6 7 8 9

4

5 6 7 8 9 10

5

6 7 8 9 10 11

6

7 8 9 10 11 12

pour tous1·i;j·6; P[X=i;Y=j] =P[X=i]P[Y=j] = 1=36

2] =P[Z= 12] = 1=36,P[Z= 3] =P[Z= 11] = 2=36,P[Z= 4] =P[Z= 10] = 3=36,

1·j·12.

P[Z=j] =6X

i=1P[Z=jjX=i]P[X=i] 1 6 6 X i=1P[X+Y=jjX=i] 1 6 6 X i=1P[Y=j¡ijX=i] 1 6 6 X i=1P[Y=j¡i] rappeler queP[Y=k] = 1=6seulement sikest dansf1;:::;6g. preuve : pour le premier point, il faut observer que X yP(X=x;Y=y) =P³ (X=x)\([y(Y=y))´ =P³ (X=x)\´ =P(X=x) et il vient

E[X+Y] =X

x;y(x+y)P(X=x;Y=y) X x;yxP(X=x;Y=y) +X x;yyP(X=x;Y=y) X xxP(X=x) +X yyP(Y=y) =E[X] +E[Y] Pour le second point, on montre tout d'abord queE(XY) =E(X)E(Y), la suite venant facilement. Ainsi,

E[XY] =X

x;yxyP(X=x;Y=y) X x;yxyP(X=x)P(Y=y) µX =E(X)E(Y)

P[Y= 1] =p; P[Y= 0] =q= 1¡p

Var(Y) =E[Y2]¡E[Y]2=E[Y]¡E[Y]2=p(1¡p).

conditions.

P(E) =q= 1¡p.

P(X=k) =µn

p k(1¡p)n¡kpour tout0·k·n oµu ¡n k¢=n! k!(n¡k)!.

P(!) =pk(1¡p)n¡k

Il en existe¡n

P(X=k) =X

!:X(!)=kP(!) = card(f!:X(!) =kg)pk(1¡p)n¡k µn p k(1¡p)n¡k np(1¡p). (preuve) AouB. Puis on le remet dans le lot et on recommence : on choisit µa nouveau un individu binomialeB(n;NA=N). loi binomialeB(4;p).

P(X= 0) =¡4

0¢q4=q4,

P(X= 1) =¡4

1¢p1q3= 4pq3,

P(X= 2) =¡4

2¢p2q2= 6p2q2,

P(X= 3) =¡4

3¢p3q1= 4p3q,

P(X= 4) =¡4

4¢p4=p4.

Pourp= 1=5, on obtient les va-

leurs :0 1 2 3 4

0.0 0.1 0.2 0.3 0.4

Loi binomiale pour n=4, p=1/5

valeurs de X probabilites

Voici d'autres exemples.

0 1 2 3 4 5

0.05 0.15 0.25

Loi binomiale pour n=5, p=0.5

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20

Loi binomiale pour n=10, p=0.5

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20 0.30

Loi binomiale pour n=10, p=0.2

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20 0.30

Loi binomiale pour n=10, p=0.8

valeurs de X probabilites X=nX i=1Y i

2.4. TROIS AUTRES LOIS DISCRµETES23

par le traitement?

P[X·6] =P[X= 0] +P[X= 1] +¢¢¢+P[X= 6]

1 2

15³

µ15

+µ15 +µ15 +µ15 +µ15 +µ15 +µ15 1 2

15(1 + 15 + 105 + 455 + 1365 + 3003 + 5005)

= 0:304 P[6·X·10] =P[X= 6] +P[X= 7] +P[X= 8] +P[X= 9] +P[X= 10] = 0:790 P[X¸12] =P[X= 12] +P[X= 13] +P[X= 14] +P[X= 15] = (455 + 105 + 15 + 1)=215 = 0:018

En¯n,E[X] = 15=2 = 7;5.

2.4 Trois autres lois discrµetes

8k= 1;2;::: P[Y=k] =p(1¡p)k¡1

preuve : admettons tout d'abord que, sur[0;1[, 1X k=0x 0 =1X k=0(xk)0=1X k=1kx k¡1 et

µ1X

k=0x 0 =µ1 0 =1 (1¡x)2

D'oµu, pourx= 1¡p,

E[Y] =1X

k=1kP[X=k] =p1X k=1k(1¡p)k¡1=p=p2= 1=p Un calcul analogue permet de calculer la variance (exercice).

2.4.2 Loi de Poisson

Cette loi est une approximation de la loi binomiale quandnpest petit etngrand (en

8k2N; P[X=k] = exp(¡¸)¸k

k! informatique pendant une minute, le nombre de globules rouges dans un ml de sang, le nombre d'accidents du travail dans une entreprise pendant un an... Dans le cas de l'approximation de la loi binomiale par la loi de Poisson, le paramµetre de la loi de Poisson est¸=np.

2.4.3 Loi uniforme

Mis µa part le prestige d^u µa son nom, la loi uniforme est la loi de l'absence d'information. valeur le m^eme poids :1=n. Et

8k= 1;:::;n; P[X=k] =1

n

On montre facilement que

E[X] =n+ 1

2 etVar(X) =(n+ 1)(n¡1) 12 P[X=¡1] = 0:2; P[X= 0] = 0:1; P[X= 4] = 0:3; P[X= 5] = 0:4

2.5. EXERCICES25

2.5 Exercices

P[X=¡1] = 0:2; P[X= 0] = 0:1; P[X= 4] = 0:3; P[X= 5] = 0:4 Exercice 3 |On admet que le nombre d'accidents survenant sur une autoroute quoti- diennement est une va qui suit la loi de Poisson de paramµetre¸= 3. CalculerP[X=k] b) Une urne contient une boule blanche et une boule noire. On prend dans cette urne une boule au hasard, on la remet et on ajoute une boule de la m^eme couleur. Quelle est la loi du nombre de boules blanches dans l'urne?quotesdbs_dbs33.pdfusesText_39
[PDF] controle de maths 4eme pdf

[PDF] bilan 6eme

[PDF] controle pourcentage 4ème

[PDF] exercice proportionnalité pourcentage 4eme pdf

[PDF] method's maths terminale s

[PDF] equation parametrique et cartesienne

[PDF] bilan français 6ème

[PDF] le devoir de mémoire ? l'école

[PDF] spinoza religion citation

[PDF] religion spinoza

[PDF] kant morale

[PDF] spinoza dieu

[PDF] devoir 7eme de base math

[PDF] devoir 7eme de base

[PDF] devoir physique 7eme de base college pilote