[PDF] Exercices de licence On se propose de montrer





Previous PDF Next PDF



Guide des indications et des procédures des examens

2 fév. 2010 L'imagerie sectionnelle par rayons X (hors scanner conventionnel) constitue une technique en cours d'évaluation. 2.2.3 Diagnostic endodontique.



Exercices corrigés de la comptabilité générale I

Exercices corrigés. FSJES Fès. Aftiss Ahmed Au cours du mois de janvier 2012 il a effectué les opérations suivantes : ... Corrigé Exercice n° 1.



Cinématique et dynamique du point matériel (Cours et exercices

forces centrales. À la fin de ce polycopié nous proposons quelques exercices corrigés. Page 6. Calcul vectoriel.



Recueil dexercices corrigés en INFORMATIQUE I

vues pendant ses cours de l'Architecture de l'Ordinateur. Logiciels de Bureautique et Technologie leurs contrôles continus et examens du Semestre 1.



ÉVALUATION Département de mathématiques et génie industriel

Alain Hertz (partie 2) alain.hertz@polymtl.ca



TD : Exercices de logique

TD : Exercices de logique négation. Exercice 1 Ecrire la négation des propositions suivantes : Alain l'associé d'Antoine a six ans de plus qu'Emile.



Exercices de licence

On se propose de montrer que f est une isométrie surjective. Exercice 252 (Cours) Soit E un espace normé et F un espace de Banach.



Exercices corrigés de Fiscalité des particuliers et des entreprises

À l'intérieur de chaque thème chaque exercice demeure lui aussi indé- Un client vient consulter Maître Opolitain à propos des revenus perçus en 2020 ( ...



fondmath1.pdf

La page d'accueil propose plusieurs catégories de cours. Il est possible de trouver des cours et des exercices dans de nombreux ouvrages dispo-.



Exercices et problèmes de statistique et probabilités

Bien que comportant des rappels de cours relativement complets nous avons choisi

Exercices de licence

Les exercices sont de :

Corn´elia Drutu (alg`ebre et th´eorie des nombres)

Volker Mayer (topologie, analyse r´eelle)

Leonid Potyagailo (alg`ebre et g´eom´etrie)

Martine Queff´elec (analyse r´eelle, analyse complexe)

Les sujets d"examens sont de :

Anne-Marie Chollet (variable complexe : VC)

Gijs Tuynman (analyse r´eelle et complexe : AR et ARC)

Table des mati`eres2Table des mati`eres

I Topologie4

1 Notions de topologie I4

1.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Topologie g´en´erale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Adh´erence, int´erieur, fronti`ere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Espaces m´etriques, espaces vectoriels norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Notions de topologie II8

2.1 Topologie s´epar´ee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Topologie induite, topologie produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fonctions continues surR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Continuit´e dans les espaces topologiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Topologie des espaces m´etriques, norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Comparaison de topologies et de m´etriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Suites, limites et valeurs d"adh´erence, points d"accumulation et points isol´es . . . . . . . . . . . . . . . . . . . . . . . 14

3 Notions de topologie III15

3.1 Hom´eomorphisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dualit´e, isom´etrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Prolongement de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 M´etrique de la convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Th´eor`eme de Baire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Connexit´e18

4.1 Connexit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Connexit´e par arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Compacit´e21

5.1 Espaces topologiques compacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Compacit´e dans les espaces m´etriques, norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II Analyse r´eelle 27

6 Applications lin´eaires born´ees27

6.1 Applications lin´eaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Formes lin´eaires continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Espaces m´etriques complets, Banach29

7.1 Espaces m´etriques complets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Espaces norm´es, Banach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Th´eor`eme du point fixe32

9 Applications uniform´ement continues34

9.1 Applications uniform´ement continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.2´Equicontinuit´e, th´eor`eme d"Ascoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 Applications diff´erentiables37

10.1 Applications diff´erentiables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2 Th´eor`eme des accroissements finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Th´eor`eme d"inversion locale et des fonctions implicites 41

11.1 Th´eor`emes d"inversion; diff´eomorphismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11.2 Th´eor`eme des fonctions implicites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.3 Sous-vari´et´es deRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Diff´erentielles d"ordre sup´erieur, formule de Taylor, extremums 46

12.1 Diff´erentielles d"ordre sup´erieur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12.2 Fonctions harmoniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12.3 Formule de Taylor, extremums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Equations diff´erentielles48

13.1 Equations diff´erentielles : rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13.2 Solutions maximales d"´equations diff´erentielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13.3 Th´eor`eme de Cauchy-Lipschitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13.4 Syst`emes `a coefficients constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13.5 R´esolvantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III Alg`ebre et g´eom´etrie 57

Table des mati`eres314 G´en´eralit´es sur les groupes57

15 Groupes et actions59

16 Isom´etries euclidiennes60

17 G´eom´etrie diff´erentielle ´el´ementaire deRn62

18 G´eom´etrie et trigonom´etrie sph´erique62

19 Le groupe orthogonal et les quaternions63

20 G´eom´etrie projective I64

21 G´eom´etrie projective II : homographies deCP164

21.1 Applications conformes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

21.2 Propri´et´es des homographies deCP1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 G´eom´etrie et trigonom´etrie hyperbolique66

IV Analyse complexe 67

23 S´eries enti`eres67

24 Fonctions holomorphes69

25 Fonctions logarithmes et fonctions puissances71

26 Formule de Cauchy73

27 Cons´equences de la formule de Cauchy76

28 Singularit´es80

29 Int´egrales curvilignes82

30 Th´eor`eme des r´esidus84

31 Fonctions Zeta et autres...86

31.1 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

31.2 Transformations deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V Alg`ebre et th´eorie des nombres 89

32 Groupes89

33 Sous-groupes, morphismes91

34 Groupes finis93

35 Anneaux, corps95

36 Polynˆomes97

37 Extension de corps99

38 Extension d"anneau100

VI Sujets d"examens 101

39 Examen AR janvier 1994101

40 Examen AR juin 1994102

41 Examen AR septembre 1994103

42 Examen AR janvier 1995104

43 Examen AR juin 1995105

44 Examen AR septembre 1995106

45 Examen AR juin 1996107

46 Examen ARC d´ecembre 1998108

1 Notions de topologie I447 Examen ARC janvier 1999110

48 Examen ARC septembre 1999111

49 Examen ARC novembre 1999112

50 Examen ARC janvier 2000114

51 Examen ARC septembre 2000115

52 Examen ARC d´ecembre 2000116

53 Examen ARC janvier 2001117

54 Examen ARC septembre 2001118

55 Examen VC janvier 96119

56 Examen VC avril 96120

57 Examen VC juin 96121

58 Examen VC septembre 96123

59 Examen VC janvier 98125

VII Corrections 127

Premi`ere partie

Topologie

1 Notions de topologie I

1.1 Rappels

Exercice 11. Rappeler les d´efinitions d"une borne sup´erieure (inf´erieure) d"un ensemble de nombres r´eels.

SiAetBsont deux ensembles born´es deR, comparer avec supA, infA, supBet infBles nombres suivants : (i) sup(A+B), (ii) sup(A?B), (iii) sup(A∩B), (iv) inf(A?B), (v) inf(A∩B).

2. Pourx?RnetA?Rnon d´efinitd(x,A) = infa?A||x-a||. Trouverd(0,R-Q),d(⎷2,Q),d(M,D) o`u

M= (x,y,z)?R3etDest la droite de vecteur unitaire (a,b,c).

3. PourA,B?Rnon d´efinitd(A,B) = infa?A,b?B||a-b||. Trouverd(A,B) lorsqueAest une branche de

l"hyperbole{(x,y)?R2;xy= 1}etBune asymptote.

4. On d´efinit diamA= supa,b?A||a-b||. Quel est diam([0,1]∩Q)? diam([0,1]∩R-Q)?

Exercice 2Montrer que tout ouvert deRest union d´enombrable d"intervalles ouverts deux `a deux disjoints.

(Indication :six?Oouvert, consid´ererJx=?des intervalles ouverts,?Oet?x). D´ecrire de mˆeme les

ouverts deRn.

Exercice 3On va montrer que l"ensembleDdes r´eels de la formep+q⎷2 o`upetqd´ecriventZ, est dense

dansR.

1. Remarquer queDest stable par addition et multiplication.

2. Posonsu=⎷2-1; montrer que pour tousa < b, on peut trouvern?1 tel que 0< un< b-a, puism

v´erifianta < mun< b.

En d´eduire le r´esultat.

1.2 Topologie g´en´erale

Exercice 41. SoitX={0,1}muni de la famille d"ouverts{∅,{0},X}. Cette topologie est-elle s´epar´ee?

2. SoitXun ensemble non vide. D´ecrire la topologie dont les singletons forment une base d"ouverts.

1 Notions de topologie I53. D´ecrire la topologie surRdont la famille des intervalles ferm´es forme une base d"ouverts; mˆeme question

avec les intervalles ouverts sym´etriques.

4. SoitXun ensemble infini. Montrer que la famille d"ensembles constitu´ee de l"ensemble vide et des parties

deXde compl´ementaire fini d´efinit une topologie surX. Exercice 5SoitXun espace topologique, etfune application quelconque deXdans un ensembleY. On dit

qu"une partieAdeYest ouverte, sif-1(A) est un ouvert deX. V´erifier qu"on a d´efini ainsi une topologie sur

Y.

Exercice 6Montrer qu"on peut construire surR? {∞}une topologie s´epar´ee en prenant comme ouverts, les

ouverts deRet les ensembles de la forme{x/|x|> a} ? {∞}o`uaest r´eel. Comment construire une topologie

s´epar´ee surR? {+∞} ? {-∞}?

Exercice 7SoitXun ensemble non vide et Σ une famille de parties deXstable par intersection finie et

contenantX. Montrer que la plus petite topologieTcontenant Σ (la topologie engendr´ee par Σ) est constitu´ee

des unions d"ensembles de Σ, ou, de fa¸con ´equivalente,

A? T ?? ?x?A?S?Σ ;x?S?A.

Montrer que l"on peut affaiblir l"hypoth`ese de stabilit´e par intersection finie en : (?)?S1,S2?Σ,?x?S1∩S2,?S3?Σ ;x?S3?S1∩S2.

Exercice 8SoitCl"ensemble des fonctions continues r´eelles sur [0,1]. Pour toutef?Cetε >0 on d´efinit

M(f,ε) ={g/?

1 0 |f-g|< ε}.

Montrer que la famille M des ensemblesM(f,ε) lorsquef?Cetε >0 est une base de topologie. Mˆeme

question avec la famille

U(f,ε) ={g/sup

x|f(x)-g(x)|< ε}.

Exercice 9UdansNest dit ouvert s"il est stable par divisibilit´e, c.a.d. tout diviseur den?Uest encore dans

U. Montrer qu"on a d´efini ainsi une topologie surNqui n"est pas la topologie discr`ete. Exercice 10On consid`ere dansN?, la famille de progressions arithm´etiques P a,b={a+bn/n?N?}, o`uaetbsont deux entiers premiers entre eux.

1. Montrer que l"intersection de deux telles progressions est soit vide, soit une progression arithm´etique de

mˆeme nature, plus pr´ecis´ement, P a,b∩Pa?,b?=Pα,β o`uαest le minimum de l"ensemblePa,b∩Pa?,b?, etβ= ppcm (b,b?).

2. En d´eduire que cette famille d"ensembles (en y adjoignant∅) forme une base de topologie surN?dont on

d´ecrira les ouverts.

3. Montrer que cette topologie est s´epar´ee.

1.3 Adh´erence, int´erieur, fronti`ere

Exercice 111. Montrer que siBest un ouvert de l"espace topologiqueXetA∩B=∅, alorsA∩B=∅,

mais queA∩Bn"est pas n´ecessairement vide.

2. Montrer `a l"aide d"exemples que l"´egalit´e?iAi=?iAin"a pas lieu en g´en´eral pour une infinit´e d"indices.

Exercice 12D´eterminer l"adh´erence et l"int´erieur des ensembles suivants : Q;R\Q;{(x,y)?R2/0< x <1,y= 0};{(x,y,z)?R3/ x= 0} {1n,n?1}; le cercle unit´e deR2. Exercice 13SiAest une partie de l"espace topologiqueX, on poseα(A) =◦Aetβ(A) =◦A.

1. Montrer queαetβsont des applications croissantes pour l"inclusion deP(X) dansP(X).

2. Montrer que siAest ouvert,A?α(A) et siAest ferm´e,β(A)?A. En d´eduire queα2=αetβ2=β.

1 Notions de topologie I63. ConstruireA?Rtel que les cinq ensembles :

A,A,◦A,α(A),β(A) soient tous distincts. Exercice 14D´eterminer l"adh´erence dansR2du graphe

G={(x,y)/y= sin1x,0< x?1}.

Exercice 15Dans un espace topologique, on d´efinit la fronti`ere d"une partieAcomme ´etant∂A=A\◦A.

1. Montrer que∂A=∂(Ac) et queA=∂A??Aferm´e d"int´erieur vide.

2. Montrer que∂(A) et∂(◦A) sont toutes deux incluses dans∂A, et donner un exemple o`u ces inclusions sont

strictes.

3. Montrer que∂(A?B)?∂A?∂B, et que l"inclusion peut ˆetre stricte; montrer qu"il y a ´egalit´e lorsqueA∩B=∅(´etablir◦A?B?◦A?◦B).

Montrer que

◦A?B=◦A?◦Breste vrai lorsque∂A∩∂B=∅(raisonner par l"absurde). Exercice 161. SoitXun espace topologique, etDun sous-ensemble (partout) dense dansX. Montrer qu"il est aussi ´equivalent de dire (i) Le compl´ementaire deDest d"int´erieur vide. (ii) SiFest un ferm´e contenantD, alorsF=X. (iii)Drencontre tout ouvert non vide deX. Montrer qu"un ensembleA?Xrencontre toute partie dense dansXsi et seulement si il est d"int´erieur non vide.

2. SoitEetGdeux ouverts denses dansX; montrer queE∩Gest encore dense dansX. En d´eduire que

toute intersection d´enombrable d"ouverts denses est une intersection d´ecroissante d"ouverts denses.

Exercice 17Etablir les propri´et´es suivantes de l"adh´erence d"un ensemble dans un espace topologique :

1.A=A

2. SiA?BalorsA?B.

quotesdbs_dbs45.pdfusesText_45
[PDF] alain propos pdf PDF Cours,Exercices ,Examens

[PDF] alain propos sur l education chapitre 24 PDF Cours,Exercices ,Examens

[PDF] alain propos sur l'éducation commentaire PDF Cours,Exercices ,Examens

[PDF] alain propos sur le bonheur explication de texte PDF Cours,Exercices ,Examens

[PDF] alarme risco mode d'emploi PDF Cours,Exercices ,Examens

[PDF] alba le lapin fluorescent 3ème SVT

[PDF] albatros chanson PDF Cours,Exercices ,Examens

[PDF] albatros envergure PDF Cours,Exercices ,Examens

[PDF] albatros poeme PDF Cours,Exercices ,Examens

[PDF] albert camus 3ème Autre

[PDF] albert camus biography PDF Cours,Exercices ,Examens

[PDF] albert camus death PDF Cours,Exercices ,Examens

[PDF] albert camus existentialism PDF Cours,Exercices ,Examens

[PDF] albert camus l étranger pdf gratuit PDF Cours,Exercices ,Examens

[PDF] albert camus l'étranger analyse PDF Cours,Exercices ,Examens