[PDF] ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE





Previous PDF Next PDF



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Algébrique sur les Matrices avec Exercices Corrigés. 57. 1. Espace vectoriel des matrices personne ayant besoin d'outils de bases d'Algèbre linéaire.



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices corrigés. Au bout du chemin



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 Propositions : Soit E un K-ev de dimension finie n. 1) Tout sev F admet au moins un sous-espace supplémentaire c'est-à-dire qu'il existe un ...



Examens corrigés dAlgèbre Linéaire et Géométrie

Pourquoi ? Exercice 8. (a) Construire une matrice 3 × 3 non nulle A telle que le vecteur. [1.



Exercices corrigés Initiation aux bases de données

2) Donner toutes les contraintes d'intégrités référentielles qui apparaissent dans ce schéma. Correction de l'exercice 3. 1. NumEtd est la clé de la relation 



Cours danalyse 1 Licence 1er semestre

pour les exercices de TD. Merci `a Michele Bolognesi pour la rédaction de quelques corrigés d'exercices. Merci `a Ivan Babenko pour la preuve de 



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

I. Les matrices et abrégé d'algèbre linéaire. 23. 1. Ces deux références proposent un cours complété d'exercices avec solutions la sec-.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Algèbre et Analyse Recueil dExercices Corrigés

8 mars 2018 que certains sujets d'examens. Avant chaque série d'exercices nous faisons un bref rappel des notions de cours ; qu'on pourra retrouver en ...

UNIVERSITÉCLAUDEBERNARDLYON1

Licence Sciences, Technologies, Santé

Enseignement de mathématiques

des parcours Informatique

ANALYSE MATRICIELLE

ET ALGÈBRE LINÉAIREAPPLIQUÉE

- Notes de cours et de travaux dirigés -

PHILIPPEMALBOS

1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . .

19

1. La structure d"espace vectoriel . . . . . . . . . . . . . . . . . . . . . .

1

2. Bases et dimension d"un espace vectoriel . . . . . . . . . . . . . . . .

5

3. Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . .

7

4. Les applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . .

9

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1. Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Produit de matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3. Matrice d"une application linéaire . . . . . . . . . . . . . . . . . . . .

10

4. Trace d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

5. Noyau et image d"une matrice . . . . . . . . . . . . . . . . . . . . . .

15

6. Le rang d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

7. Opérations matricielles par blocs . . . . . . . . . . . . . . . . . . . . .

18

8. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

1. Définition récursive du déterminant . . . . . . . . . . . . . . . . . . .

1

2. Premières propriétés du déterminant . . . . . . . . . . . . . . . . . . .

3

3. Les formules de Cramer . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4. Formulation explicite du déterminant . . . . . . . . . . . . . . . . . . .

10 1

2Table des matières

5. Calcul des déterminants . . . . . . . . . . . . . . . . . . . . . . . . . .

12

6. Calcul de l"inverse d"une matrice . . . . . . . . . . . . . . . . . . . . .

15

7. Déterminant d"un endomorphisme . . . . . . . . . . . . . . . . . . . .

17

8. Annexe : rappels sur les groupes de symétries . . . . . . . . . . . . . .

18

9. Annexe : déterminants et formes multilinéaires alternées . . . . . . . .

20

1. Équations d"évolution linéaire couplées . . . . . . . . . . . . . . . . .

1

2. Le découplage de système d"équations . . . . . . . . . . . . . . . . . .

5

3. La diagonalisation des matrices et des endomorphismes . . . . . . . . .

8

4. Marches sur un graphe et diagonalisation . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Valeurs propres et espaces propres . . . . . . . . . . . . . . . . . . . .

5

3. Calcul des valeurs propres . . . . . . . . . . . . . . . . . . . . . . . .

9

4. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1. Trigonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

1

2. Diagonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

9

3. Une obstruction au caractère diagonalisable . . . . . . . . . . . . . . .

12

4. Caractérisation des matrices diagonalisables . . . . . . . . . . . . . . .

15

5. Matrices diagonalisables : premières applications . . . . . . . . . . . .

17

6. Trigonalisation et diagonalisation des endomorphismes . . . . . . . . .

20

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Polynômes de matrices . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Le lemme de décomposition en noyaux . . . . . . . . . . . . . . . . .

6

4. Le polynôme minimal . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

5. Le théorème de Cayley-Hamilton . . . . . . . . . . . . . . . . . . . . .

14

6. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

21

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Matrices nilpotentes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Les espaces spectraux . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Décomposition spectrale géométrique . . . . . . . . . . . . . . . . . .

7

Table des matières1

5. Décomposition spectrale algébrique . . . . . . . . . . . . . . . . . . .

10

6. Calcul de la décomposition spectrale algébrique . . . . . . . . . . . . .

15

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

1. Calcul des puissances d"une matrice . . . . . . . . . . . . . . . . . . .

1

2. La fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . .

4

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Les suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. La suite de Fibonacci (1202) . . . . . . . . . . . . . . . . . . . . . . .

3

3. Dynamique de populations . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Systèmes différentiels linéaires à coefficients constants . . . . . . . . .

2

2. Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Sommaire1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . .1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . .

19 Ce chapitre contient peu de démonstrations, son rôle est de fixer les notations et de

rappeler les structures algébriques fondamentales, ainsi que les principaux résultats al- gébriques que nous utiliserons dans ce cours. Nous renvoyons le lecteur au cours de première année pour tout approfondissement.

§1 Ensembles et applications

0.1.1.Applications.-SoientAetBdeux ensembles. Uneapplication fdeAdansB

est un procédé qui à tout élementxdeAassocie un élément unique deB, notéf(x). On

notef:A!B, ouAf!B, ou encore f:A!B x!f(x):

On notef(A)l"image de l"ensembleA, définie par

f(A) =fyjy2B;9x2A;tel quey=f(x)g: 1

2CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

L"image inverse d"un sous-ensembleYBest définie par f

1(Y) =fxjx2A;f(x)2Yg:

Une applicationf:A!Best diteinjectivesi,f(x) =f(y)impliquex=y. Elle est ditesurjectivesif(A) =B,i.e., pour touty2B, il existe unx2Atel quey=f(x). Une application est ditebijectivesi elle est à la fois injective et surjective. Sif:A!Betg:B!Csont deux applications, on notegf, ou encoregf, l"application, ditecomposée, définie par gf:A!C x!g(f(x)): La composée des applications est une opération associative, i.e., étant données trois applicationsAf!Bg!Ch!D, on a h(gf) = (hg)f:

0.1.2.Quelques ensembles fondamentaux de nombres.-Dans tout ce cours, nous

supposons connus les ensembles de nombres suivants et les opérations d"addition, de soustraction, de multiplication et de division sur ces ensembles : ?l"ensemble des entiers naturels, 0, 1, 2,:::, notéN, ?l"ensemble des entiers relatifs, notéZ, formé des entiers naturels et de leurs opposés, ?l"ensemble des rationnels, notéQ, formé des quotientspq , oùpetqsont des entiers relatifs, avecqnon nul, ?l"ensemble des réels, notéR, qui contient les nombres rationnels et les irrationnels, ?l"ensemble des complexes, notéC, formé des nombresa+ib, oùaetbsont des réels etiun complexe vérifianti2=1.

Sipetqsont deux entiers relatifs, on notera

Jp;qK=fa2Zjp6a6qg:

§2 Les corps

Uncorpsest un objet algébrique constitué d"un ensemble et de deux opérations sur cet ensemble, une addition et une multiplication, qui satisfont à certaines relations. Intu- itivement, cette structure est proche de notre intuition de nombres et des opérations que l"on peut leur appliquer. Avant d"énoncer les relations des deux opérations de la structure de corps, rappelons la structure de groupe. suivantes

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES3

i)l"opération estassociative,i.e., pour tous élémentsa,betcdeG, a?(b?c) = (a?b)?c; ii)il existe un élémentedansG, appeléneutre, tel que, pour tout élémentadeG, a?e=e?a=a; iii)pour tout élémentadeG, il existe un élémentinverse, que nous noteronsa1, tel que a?a1=e=a1?a: Exercice 1.-On définit sur l"ensemble des nombres réels l"opération?en posant a?b=2a+2b:

1.Cette opération est-elle associative?

2.L"opération

a?b=2a+b est-elle associative?

Exercice 2.-

1.Montrer qu"un groupe possède un unique élément neutre.

2.Montrer que dans un groupe, l"inverse d"un élément est unique.

0.2.2.Exemples.-

1)Le groupetrivialest le groupe à un seul élément, l"élément neutre.

2)L"ensemble des entiersZforme un groupe pour l"addition usuelle. Il ne forme pas

un groupe pour la multiplication.

3)L"ensemble des nombres rationnelsQforme un groupe pour l"addition. L"ensem-

bleQf0gdes nombres rationnels non nul est un groupe pour la multiplication.

4)L"ensemble des complexes non nulsCf0g, muni de la multiplication usuelle des

complexes.

5)L"ensembleRndesn-uplets ordonnées

(x1;:::;xn) de nombres réels, muni de l"opération (x1;:::;xn)+(y1;:::;yn) = (x1+y1;:::;xn+yn); forme un groupe. Exercice 3.-Justifier toutes les propriétés précédentes. Dans le cas deRn, déterminer l"élément neutre du groupe et l"inverse d"unn-uplet(x1;:::;xn).

4CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

0.2.3.Les groupes abéliens.-Un groupe est ditabélien, oucommutatif, si tous élé-

mentsaetbvérifient a?b=b?a:

Les groupes des exemples 0.2.2 sont abéliens.

Exercice 4.-Les opérations de l"exercice 1 sont-elles commutatives?

Exercice 5.-SoitXun ensemble.

1.Montrer que l"ensemble des permutations deX, i.e. des bijections deXdans lui-

même, forment un groupe.

2.Montrer que ce groupe n"est pas commutatif lorsqueXpossède au moins trois élé-

ments.

0.2.4.Les corps.-Uncorps(commutatif) est un ensembleKsur lequel une opération

d"addition(a;b)!a+bet une opération de multiplication(a;b)!absont définies et satisfont aux assertions suivantes : i)Kest un groupe abélien pour l"addition, ii)Kf0gest un groupe abélien pour la multiplication, iii)la multiplication est distributive par rapport à l"addition, i.e., pour tous élémentsa, betc, on a a(b+c) =ab+ac: deaet notéa, l"élement neutre pour la multiplication est appeléunitéet noté 1, l"inversedeapour la multiplication est notéa1.

0.2.5.Exemples.-

1)L"ensemble des nombres rationnelsQ, l"ensemble des nombres réelsRet l"ensem-

ble desnombres complexesC, munis desopérations d"addition etde multiplication usuelles sont des corps.

2)L"ensembleZdes entiers relatifs n"est pas un corps.

3)Un exemple de corps fini, i.e., avec un nombre fini d"éléments, est donné par

l"ensemble, notéZ=pZ, des entiers modulo un entier premierp, muni des opéra- tions d"addition et de multiplication induites de celles deZ.

Exercice 6.-Montrer queZ=4Zn"est pas un corps.

Exercice 7.-Montrer que dans un corps, l"élément neutre de l"addition joue le rôle d"annulateur, i.e., pour tout élémenta, on a : a0=0: Par définition, un groupe ne peut être vide, il contient au moins un élément. Un corps contient donc au moins deux éléments 0 et 1 qui sont nécessairement distincts.quotesdbs_dbs45.pdfusesText_45
[PDF] algèbre linéaire matrice PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pdf PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pour les nuls PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pour les nuls pdf PDF Cours,Exercices ,Examens

[PDF] Algèbre linéaire Sous-espace Bac +3 Mathématiques

[PDF] algebre mathématique PDF Cours,Exercices ,Examens

[PDF] algebre pdf PDF Cours,Exercices ,Examens

[PDF] algebre polynome exercice corrigé PDF Cours,Exercices ,Examens

[PDF] algèbre pour les nuls PDF Cours,Exercices ,Examens

[PDF] algébre sur les nombres relatifs 4ème Mathématiques

[PDF] algebre trigonometrie niveau bac PDF Cours,Exercices ,Examens

[PDF] Algèbre, Dérivation Bac Mathématiques

[PDF] Algébre, puissance 3ème Mathématiques

[PDF] Algebre, racine carrée 3ème Mathématiques

[PDF] Algébres 2nde Mathématiques