[PDF] Exercices dÉlectrocinétique Régime transitoire et régime forcé continu





Previous PDF Next PDF



Cours délectrocinétique - EC3-Circuit RLC série

A la fin du chapitre précédent nous avons étudié les régimes transitoires des circuits du premier ordre RC et RL dont on a résolu les équations différentielles 



Etude des circuits RLC

3 Les circuits RLC série 4.3 Résolution détaillée d'une équation différentielle du second ordre d'un circuit RLC avec Ve(t) fonction échelon .



Chapitre 6 - Circuits RLC

C'est une équation différentielle du 2e ordre. Les étapes de calcul des circuits RLC série sont les même que celle des circuits RLC pa- rall`ele.



Circuit RLC en régime libre Oscillations électriques

Equation différentielle du RLC. L. R. C i(t). uC(t). R i(t). L di(t) dt. Loi des mailles. uC (t) + R i(t) + L di(t) dt. = 0. =? uC (t) + R C. duC (t).



III Circuit RLC série

Circuit RLC série. Régimes transitoires TP. III Circuit RLC série. III.1 Théorie. § Équation différentielle vérifiée par la tension ( ) :.



Circuit RLC série excité

? = est le coefficient d'amortissement et ?0 sa pulsation propre. Cette équation est celle d'un oscillateur harmonique que l'on retrouve dans de nombreux.



Thème : Electricité Fiche 6 : Oscillations libres du circuit RLC série

Régime apériodique d'un circuit RLC série : régime pour lequel la tension C Dans le régime périodique (circuit LC) l'équation différentielle de C.



Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

1) Considérons le circuit dipolaire RLC série du cours alimenté par une tension sinuso?dale. (e(t) = E0 cos(?t)). ?. Établir que l'équation différentielle 



Chapitre 5 - Circuits RL et RC

Remarquer que le courant tend vers une valeur finale de 2A. 5.1.1 Puissance et ´energie dans une inductance. On peut obtenir les équations de puissance et d' 



Circuits RLC - UMoncton

CHAPITRE 6 CIRCUITS RLC Il faut trouver les constantes A1 et A2 v(0+) = A 1 +A2 = 12 dv(0+) dt = i C(0+) C = 5000A1 20000A2 = 450000 On solutionne pour obtenir A1 = 14 et A2 = 26 La tension est : v(t) = 14e5000t+26e20000tV; t 0 On peut veri?er la solution Il faut que´ v(t= 0) = v(0+) v(0) = 14+26 = 12 X Et si on d´erive dv(0+) dt = 14



EC3-Circuit RLC série

Le circuit RLC étant du deuxième ordre ce sera aussi le cas de son équation diérentielle Elle fera alors apparaître la notion de régimes : selon l’amortissement du circuit par eet Joule le régime transitoire est diérent



Résumé sur les circuits RC RL et RLC

1) mettre en place l’équation différentielle 2) trouver la solution de cette équation a) à partir de le forme générale de la solution b) en tenant compte des conditions initiales Toutes les équations doivent être mises en place en respectant les orientations i q u des schémas de ce résumé E 2 R q -q u C C i K K 1 u R



Chapitre 3 : Le circuit RLC série

Chapitre 3 : Le circuit RLC série Un condensateur est capable de stocker de l'énergie électrique puis de la restituer sa charge et sa décharge sont caractérisées par une constante de temps ? Il en est de même pour la bobine Que se passe-t-il lorsqu'on associe en série un condensateur et une bobine



Searches related to circuit rlc série équation différentielle PDF

Chap 4 – Circuit RLC série en régime sinusoïdal forcé 1 Signaux sinusoïdaux (rappels de TP) 1 1 Caractéristiques d’un signal sinusowdal 1 2 Déphasage entre deux signaux synchrones 2 Le régime permanent est sinusoïdal 2 1 Les deux termes de la solution : régime transitoire et régime permanent 2 2

Quelle est la différence entre le circuit RL et le circuit du second ordre ?

On étudie le circuit RL soumis à une tension , on s’intéresse à la tension aux bornes du condensateur et à l’intensité qui parcourt le circuit. La bobine est idéale. On applique la loi des mailles : Cette équation différentielle est une équation du second ordre à coefficient constant, le circuit RLC série est appelé circuit du second ordre.

Comment calculer le régime de fonctionnement d’un circuit ?

La valeur de R dans un circuit RLC détermine le régime de fonctionnement de celui-ci: pseudo-périodique ou apériodique. d- Régime périodique Si l’amortissement est négligeable (ce qui ne peut exister en pratique pour un circuit libre), le système est le siège d’oscillations non amorties, le régime est alors périodique.

Quelle est la solution de l’équation différentielle ?

La solution de l’équation différentielle est la combinaison linéaire de deux solutions complexes : avec et des constantes complexes. Or nous voulons obtenir une solution réelle ! On peut montrer qu’à partir de ces deux solutions complexes, on peut construire deux solutions réelles tout aussi solutions de la même équation différentielle.

Qu'est-ce que l'équation différentielle ?

L’équation différentielle correspondant à ce régime libre (appelé aussi régime propre) est la suivante : On cherche donc une solution de cette équation qui est une équation homogène. Cette solution est du type avec A une constante. Cette dernière équation est appelée polynôme caractéristique de l’équation différentielle .

2008-2009Exercices d"´Electrocin´etique

?R´egime transitoire et r´egime forc´e continuE4? ???Ex-E4.1Circuit d"ordre 1 (1)

ExprimeriR(t) etiL(t), puis tracer les

courbes repr´esentatives.

On poseraτ=L

R. t R L0I i K iLRII 0 I 0

R´ep :iL(t) =I?

1-exp?

-tτ?? etiR(t) =Iexp? -tτ? ???Ex-E4.2CircuitRLCparall`ele

1)D´eterminer l"´equation diff´erentielle v´erifi´ee parien fonction de :

0=1 ⎷LCetQ0=RCω0.

2)On poseλ=1

2Q0. D´etermineri(t) sachant quei(t= 0) =i0?= 0

etu(t= 0) = 0. On distinguera trois cas :a)λ= 1,b)λ >1 etc)λ <1. R´ep : 1)d2idt2+ω0Qdidt+ω20i= 0 avecω0=1⎷LCetQ=RCω0=RLω0;

2.a)λ >1 :i(t) =i0

2.b)λ= 0 :i(t) =i0(1 +λω0t)e-λω0t;

2.c)λ <1 :i(t) =i0(cosωt+sinωt

τω)exp?

-tτ? ???Ex-E4.3Circuit d"ordre 1 (2) Dans le circuit repr´esent´e ci-contre on ferme l"interrup- teurK`a la datet= 0, le condensateur ´etant initialement d´echarg´e.

1)´Etablir l"expression deq(t) o`uqest la charge du

condensateur, en d´eduirei1,i2etien fonction du temps.

2)Calculer `a la datet1l"´energie stock´ee dans le conden-

sateur. E A B i2 C i1i qr R (I) (II)K

3)´Ecrire sous la forme d"une somme d"int´egrales un bilan d"´energie entre les dates 0 ett1.

R´ep : 1)En posantτ=CRr

R+r:q(t) =ECRR+r?

1-exp?

-tτ?? ;i1(t) =Erexp? -tτ? i

2(t) =E

R+r?

1-exp?

-tτ?? ;i(t) =ER+r?

1 +Rrexp?

-tτ?? ???Ex-E4.4Circuit d"ordre 1 (3) D´eterminer l"intensit´e du couranti(t) dans le condensateur, ainsi que la tensionu(t) `a ses bornes sachant que l"on ferme l"interrupteur `a la datet= 0 et que le condensateur n"est pas charg´e initialement.

Repr´esenter graphiquementi(t) etu(t).

R´ep :i(t) =10E

4R+rexp?

-tτ? avecτ=C? R+r4? u(t) =5E 2?

1-exp?

-tτ?? .RK rE r4E r3E r2E qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/9

Exercices d"´Electrocin´etique2008-2009

???Ex-E4.5R´egime transitoire ap´eriodique (*) `At= 0-, les condensateurs sont d´echarg´es. On ferme alors l"interrupteurK.

1)´Etablir l"´equation diff´erentielle eni1.

2)D´eterminer les conditions initialesi1(0+) etdi1

dt(0+).

3)Exprimeri1(t).

i1 C E A B i2i R KRC R´ep : 1)i1v´erifie l"´equation canonique d"ordre 2 avecω0=1RCetQ=13;2)i1(0+) =ERet di1 dt(0+) =-2ECR2;3)i1(t) =ER? ch? 5 2RCt?

1⎷5.sh?

5

2RCt??

exp? -3t2RC? ???Ex-E4.6Bobine et condensateur r´eels en s´erie (1)

1)D´eterminer l"´equation diff´erentielle v´erifi´ee pari.

2)`A quelles conditions le r´egime transitoire est-il :

a) critique; b) ap´eriodique; c) pseudo-p´eriodique?LR RC e K1 2

R´ep : 1)d2id+2ω

R

2C+LR1?

0.

2)ÜCf CoursE4:regarder le signe de Δ, discriminant de l"´equation caract´eritique, et donc la

valeur deQ(Q <1

2,Q=12,Q <12).

???Ex-E4.7Bobine et condensateur r´eels en s´erie (2) : r´egime transitoire pseudo-p´eriodique (*) Le montage ci-contre mod´elise une bobine r´eelle (L, R) en s´erie avec un condensateur r´eel (C, R) initialement d´echarg´e. On ferme l"interrupteurK`a la datet= 0

On impose la relation suivante :τ=L

R=RC.

Initialement :i(0-) = 0 etu(0-) = 0.

C R LR ui EK

1)´Etablir l"´equation diff´erentielle r´egissantu(t), tension aux bornes du condensateur lorsque le

circuit est branch´e, `at= 0, sur un g´en´erateur de tensionE.

2)D´etermineru(t) pourt≥0.

3)D´etermineri(t), intensit´e circulant dans la bobine.

4)Peut-on pr´evoir le r´egime permanent sans calcul? Si oui, d´eterminerU, tension aux bornes

du condensateur, etI, courant dans la bobine, en r´egime permanent.

R´ep : 3)i(t) =E

2R? 1 +? -costτ+ sintτ? exp? -tτ?? ;4)Faire un sch´ema ´equivalent du montage lorsque le r´egime permanent continu est atteint :I=E

2RetU=E2.

???Ex-E4.8Trois r´esistances et une bobine Le circuit ´etudi´e comporte trois r´esistancesR1,R2etR3, une bobine parfaite d"inductanceL, un g´en´erateur def.´e.m.

Eet un interrupteurK.

1)Initialement, la bobine n"est parcourue par aucun cou-

rant.`A l"instantt= 0, on ferme l"interupteurK. L iE K

R3R2R1

→´Etablir la loi d"´evolution dei(t) et d´eterminer le courantIen r´egime permanent dans la

bobine. On poseraτ=L(R2+R3)

R1R2+R2R3+R3R1.

2)Le courant d"intensit´eIest ´etabli, on ouvre `at= 0 (r´einitialisation du temps!).

10http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

→D´eterminer la nouvelle loi donnanti(t) et l"´energie dissip´ee par effetJouledans les r´esistances.

On poseraτ?=L

R1+R2.

R´ep : 1)i(t) =I0?

1-exp?

-t avecI0=ER2R1R2+R2R3+R3R1;

2)i(t) =Iexp?

-t etEJ=12LI2. ???Ex-E4.9Transfert de charge entre deux condensateurs :

Un condensateur de capacit´eCest charg´e sous uneddpE, puis, `at= 0, est reli´e, par fermeture

de l"interrupteurK, `a un circuit (R,C?) s´erie ( le condensateur de capacit´eC?est initialement

non charg´e).

1)D´eterminer les variations du couranti(t) de d´echarge du condensateurC.

2)Calculer la variation d"´energie ΔEdu syst`eme constitu´e

par la r´esistanceRet les deux condensateursCetC?.

3)D´emontrer que|ΔE|est aussi l"´energie dissip´ee par effet

JouleEJdans la r´esistanceR.

4)L"expression de|ΔE|´etant ind´ependante deR, que se

passe-t-il lorsqueRtend vers 0? Ci(t) u'(t) u(t)K RC'

R´ep : 1)i(t) =ERexp?

-tτ? avec1τ=1R?

1C+1C??

;2)ΔE=-12CC ?C+C?E2. ?R´egime sinuso¨ıdal E5? ???Ex-E4/5.1Circuit RLC S´erie

1)Consid´erons le circuit dipolaire RLC s´erie du cours aliment´e par une tension sinuso¨ıdale

(e(t) =E0cos(ωt)).→´Etablir que l"´equation diff´erentielle qui r´egit la tension aux bornes de la

capacit´eCest : LC d2uC dt2+RCduCdt+uC=E0cos(ωt)

→Donner l"expression intrins`eque de cette ´equation diff´erentielle en fonction deQ, facteur de

qualit´e et de la pulsation propreω0.

→Donner l"expression intrins`eque de cette ´equation diff´erentielle en fonction deα, coefficient

d"amortissement et de la pulsation propreω0. 2)

´Etablir queuC(t) =E0?

sin(ω0t)-2⎷ 3 3exp? -12ω0t? sin? 3

2ω0t??

lorsque le circuit v´erifie les quatre conditions suivantes :

(1)le condensateur est initialement d´echarg´e;(2)l"intensit´e est nulle avant la fermeture de

l"interrupteur;(3)la pulsation du g´en´erateur estω=ω0et(4)le coefficient d"amortissement

vautα=1 2. ???Ex-E5.2Addition de deux signaux de mˆeme fr´equence Supposons deux signaux sinuso¨ıdauxS1(t) =S0cos(ωt) etS2(t) =S0sin(ωt). →En utilisant les repr´esentations complexes, calculer la sommeS(t) =S1(t) +S2(t). →Pr´eciser l"amplitude et la phase `a l"origine de ce signal. →Tracer les fonctionsS1(t),S2(t) etS(t); v´erifier le r´esultat pr´ec´edent. →Si ces deux signaux sont deux tensions telles queS1(t) soit la tension aux bornes d"une

r´esistanceRetS2(t) la tension aux bornes d"un second dipˆole, en d´eduire la nature de ce second

dipˆole. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/11

Exercices d"´Electrocin´etique2008-2009

???Ex-E5.3R´eseau `a trois mailles On consid`ere le r´eseau `a trois mailles ind´ependantes, repr´esent´e ci-contre, aliment´e par la source de tension al- ternative def.´e.m.:e(t) =E⎷

2cosωt.

La fr´equence du g´en´erateur est r´egl´ee de mani`ere `a avoir :

Lω=1

Cω=R.

C 2R e LR2LM N D´eterminer toutes les caract´eristiques de l"intensit´edu courant dans la r´esistanceR.

A. N. :E= 20V;R= 10 Ω.

R´ep :i(t) = 0,686cos(ωt-1,82)A, o`u 1,82rad= 104◦. ???Ex-E5.4Mod´elisation de Th´evenin On consid`ere le circuit suivant aliment´e entreAetBpar une source de tension alternative sinuso¨ıdale def.´e.m.: e(t) =E⎷

2cosωt.

D´eterminer les caract´eristiques du g´en´erateur de tension (mod`ele deTh´evenin) ´equivalent entreFetDsachant queωest telle que :LCω2= 1 etRCω= 1C R e LF DRA B

R´ep :

E

Th=2-j5E?eTh(t) =E?2

5cos(ωt-0,464)A, o`u-0,464rad= arctan?

-12? =arg(2-j).

Cettef.´e.m.est en s´erie avecZ

´eq=R´eq+1jC´eqω?soit une r´esistanceR´eq=3R5en s´erie avec une capacit´eC´eq=5C 4. ???Ex-E5.5Calculs d"imp´edances

D´eterminer

l"imp´edance complexe Z du r´eseau dipolaire entre les bornesAet

Bdans les quatre cas

suivants.

En d´eduire `a chaque

fois l"imp´edance r´eelleZainsi que le d´ephasage de la tensionupar rapport au couranti. L i CR A B uLiC A B u L i CR A B u i C A B u Ra c b d R R C ???Ex-E5.6Circuit RLC parall`ele en r´egime sinuso¨ıdal

Exprimer la tensionu

aux bornes d"un r´eseau dipolaire constitu´e d"une r´esistance en parall`ele avec une bobine en parall`ele avec un condensateur en fonction deR,L,C,wet dei ≡I0exp(jωt) (intensit´e fournie au dipˆole).quotesdbs_dbs35.pdfusesText_40
[PDF] circuit rlc série en régime sinusoïdal

[PDF] circuit rlc impédance

[PDF] oscillations libres dans un circuit rlc série

[PDF] oscillations electriques libres exercices

[PDF] cours de rlc niveau terminale en pdf

[PDF] exercice corrigé circuit rlc terminale

[PDF] dire je t'adore islam

[PDF] le mot adorer en islam

[PDF] on adore quallah

[PDF] dire jadore 3ilm char3i

[PDF] le mot j adore en islam

[PDF] l'estime de soi livre pdf

[PDF] test estime de soi pdf

[PDF] développer lestime de soi pdf

[PDF] estime de soi adolescent