[PDF] [PDF] La fonction exponentielle - Lycée dAdultes





Previous PDF Next PDF



FONCTION EXPONENTIELLE

4) Courbe représentative. On dresse le tableau de variations de la fonction exponentielle : x. +. 0 expx. ( )' = expx exp(0) = 1 expx > 0.



Enthalpie libre évolution et équilibre

Pour une réaction donnée la constante d'équilibre thermodynamique notée K° est définie par la relation : ? K° = exp (-?. 0. rG (T) RT.LnK (T).



Détermination de la constante de temps de charge du condensateur

l'asymptote uC = E on obtient ? ? Trouvons l'équation de la tangente à uC(t) en t = 0 : On a uC = E (1 – exp(-t/?)). Donc. )/ exp( t.



TD 5 Transformation de Laplace

14 oct. 2016 où H(t) est la fonction de Heaviside définie par H(t) = 0 pour t ... T:=convert(subs([f(0)=0D(f)(0)=2]



FONCTION EXPONENTIELLE

Cette fonction f est définie par : f(x) = a × exp(kx) pour tout x ? IR . Exercice 01. On considère un partage de l'intervalle [0 ; 1] en n intervalles de même 



T ES Fonction exponentielle

Pour tout réel x et tout réel y strictement positif : ln y = x équivaut à y = exp(x) . Pour tout réel x ex > 0



Fonction Exponentielle

comme f '(x) = f (x) et f '(-x) = f (-x) on trouve h'(x) = 0. La fonction g est donc constante et pour tout x



Untitled

t ??? f(t) exp(-itx) est intégrable sur R. admet une limite dans C quand à tend vers +?o ou -?o donc f admet une limite.



La fonction exponentielle Problème à résoudre I) Définition de la

Il existe une unique fonction f définie et dérivable sur R telle que f(0) = 1 et f = f. Cette fonction est appelée exponentielle et notée exp. Démonstration.



formulaire.pdf

Dans tout ce formulaire on ne parle pas du domaine de définition de la formule : par exemple ?a sous-entend a ? 0 n ? N?



[PDF] FONCTION EXPONENTIELLE - maths et tiques

Définition : On appelle fonction exponentielle l'unique fonction dérivable sur ? telle que et On note cette fonction exp Conséquence : Avec la calculatrice 



[PDF] Fonction Exponentielle

Exemple : fonctions de type exp(-kx^2) avec k>0 Soit k un réel strictement positif et Alors L'exponentielle étant toujours positive et k positif



[PDF] formulairepdf

Dérivées Fonctions usuelles Fonctions usuelles R`egles de dérivation Exemples f(x) f?(x) f(x) f?(x) k 0 x 1 (u + v)? = u? + v? (u × v)? = u?v + uv?



[PDF] FONCTION EXPONENTIELLE 1 Définition de la fonction « exp

Si f(0) = 1 f = exp d'après la définition 2 Réciproquement la fonction exp vérifie les conditions de l'énoncé 2 Propriétés de la fonction exp ; Relations 



[PDF] Les Exponentielles

Définition 1 : On appelle fonction exponentielle la fonction f définie sur R par f(x) est l'unique antécédent y de x par la fonction ln c'est-`a-dire ln(y) 



[PDF] T ES Fonction exponentielle

Le fonction exponentielle notée exp est la fonction réciproque de la fonction logarithme népérien Pour tout réel x et tout réel y strictement positif : ln y 



[PDF] La fonction exponentielle - Lycée dAdultes

24 nov 2015 · f et f(0) = 1 On nomme cette fonction exponentielle et on la note : exp ROC Démonstration : L'existence de cette fonction est admise



[PDF] FONCTION EXPONENTIELLE

Il existe une unique fonction f définie et dérivable sur IR telle que f ' = f et f(0) = 1 Cette fonction est notée exp et appelée fonction exponentielle 



[PDF] Exponentielle de matrices

exp est à valeur dans GLn(C) : M et ?M commutent M +(?M)=0 exp(0) = In Proposition 1 4 Si P ? GLn(C) et A ? (Mn(C) alors exp(P?1AP) = P 



[PDF] exponentielle selon GTD 3

Il en résulte que exp est continue en x : quand h tend vers 0 exp(x + h) tend vers expx Reprenant alors (??) divisée par h on en déduit aussitôt que exp est

  • Quand est-ce que exp vaut 0 ?

    Donc la limite de la fonction exponentielle lorsque x tend vers -? est 0.
  • Quand exponentielle est négative ?

    Lorsqu'une base est négative
    Lorsque l'exposant n est un nombre pair, il y a donc un nombre pair de multiplication de nombres négatifs. Ainsi, la puissance sera positive. Lorsque l'exposant n est un nombre impair, il y a donc un nombre impair de multiplication de nombres négatifs. Ainsi, la puissance sera négative.
  • Comment résoudre exp ?

    Pour résoudre une équation exponentielle, il faut être à l'aise avec les logarithmes. Il est important de garder en tête que av=aw a v = a w si et seulement si v=w . Donc, lorsqu'on a deux expressions qui sont égales et qu'elles ont la même base, alors les exposants sont égaux.
DERNIÈRE IMPRESSION LE24 novembre 2015 à 11:22

La fonction exponentielle

Table des matières

1 La fonction exponentielle2

1.1 Définition et théorèmes. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Approche graphique de la fonction exponentielle. . . . . . . . . . . 3

1.3 Relation fonctionnelle. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Autres opérations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Étude de la fonction exponentielle5

2.1 Signe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Limites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Courbe représentative. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Des limites de référence. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Étude d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Compléments sur la fonction exponentielle10

3.1 Dérivée de la fonctioneu. . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Exemples types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Fonctions d"atténuation. . . . . . . . . . . . . . . . . . . . . 10

3.2.2 Chute d"un corps dans un fluide. . . . . . . . . . . . . . . . 11

3.2.3 Fonctions gaussiennes. . . . . . . . . . . . . . . . . . . . . . 13

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

Avant propos

Le but de ce chapitre est de construire une des fonctions mathématiquesles plus importantes. Elle est en effet présente dans toutes les sciences. Sa construction à partir d"une équation différentielle est passionnante, bien qu"historiquement elle ne se soit pas construite ainsi.

1 La fonction exponentielle

1.1 Définition et théorèmes

Théorème 1 :Il existe une unique fonctionfdérivable surRtelle que : f ?=fetf(0) =1 On nomme cette fonction exponentielle et on la note : exp ROCDémonstration :L"existence de cette fonction est admise.

Démontrons l"unicité.

•La fonction exponentielle ne s"annule pas surR. Soit la fonction?définie surRpar :?(x) =f(x)f(-x). Montrons que la fonction?est constante. Pour cela dérivons?. ?(x) =f?(x)f(-x)-f(x)f?(-x)

Commef?=f, on a :

=f(x)f(-x)-f(x)f(-x) =0

Comme??=0 alors la fonction?est constante. Donc :

?x?R?(x) =?(0) =f2(0) =1 On en déduit alors :f(x)f(-x) =1, donc la fonctionfne peut s"annuler. •UnicitéOn suppose que deux fonctionsfetgvérifient les conditions du théorème, soit f=f?,g?=getf(0) =g(0) =1. La fonctiongne s"annule donc pas, on définit alors surRla fonctionhparh=f g. On dériveh: h ?=f?g-fg? g2=fg-fgg2=0

La fonctionhest donc constante eth(x) =f(0)

g(0)=1

On a donc :?x?R,f(x)

g(x)=1. On en déduit quef=g. L"unicité est ainsi prouvée. Nous noterons dans la suite cette fonction exp.

PAULMILAN2 TERMINALES

1. LA FONCTION EXPONENTIELLE

1.2 Approche graphique de la fonction exponentielle

Algorithme :Déterminer un algorithme permettant de visualiser la fonction exponentielle à partir de sa définition sur l"intervalle[-A;A]. On fera une approche de la fonction exponentielle à l"aide d"une approximation affine :f(a+h)≈f(a) +hf?(a). L"approximation sera d"autant meilleure queh sera petit Comme la fonction exponentielle vérifief?=f, cette approximation affine de- vient alors : f(a+h)≈f(a) +hf(a)≈f(a)(1+h) On commence à tracer le point (0; 1) carf(0)=1, puis avec un pasP, on trace de proche en proche les points à droite(X;Z)et les points à gauche(-X;T)du point (0; 1) dans l"intervalle[-A;A].

On obtient la courbe suivante pour :A=2 etP=1/10.

On prendra comme fenêtre :

X?[-2 ; 2]etY?[-0,5 ; 7]

Variables:A,P: entiers

X,Z,T: réels

Entrées et initialisation

LireA,P

0→X

1→Z

1→T

Effacer dessin

Tracer le point(X;Z)

Traitement

pourIde 1 àA/Pfaire

X+P→X

Z(1+P)→Z

T(1-P)→T

Afficher le point(X;Z)

Afficher le point(-X;T)

fin

1.3 Relation fonctionnelle

Théorème 2 :Soitaetbdeux réels, on a alors : exp(a+b) =exp(a)×exp(b) Remarque :Cette relation s"appelle la relation fonctionnelle car on pourrait dé- finir l"exponentielle à partir de cette propriété pour retrouver que l"exponentielle est égale à sa dérivée. Démonstration :Posons la fonctionh(x) =exp(x+a) exp(a). Montrons alors que la fonctionhn"est autre que la fonction exponentielle. Il suffit alors de montrer queh?=heth(0) =1 :

PAULMILAN3 TERMINALES

TABLE DES MATIÈRES

h?(x) =exp?(x+a)exp(a)=exp(x+a)exp(a)=h(x) h(0) =exp(0+a) exp(a)=1 La fonctionhest donc la fonction exponentielle. On en déduit alors : exp(x+a) exp(a)=exp(x)?exp(x+a) =exp(x)×exp(a)

1.4 Autres opérations

Théorème 3 :Soitaetbdeux réels etnun entier naturel, on a alors les relations suivantes : •exp(-a) =1exp(a)•exp(a-b) =exp(a)exp(b)•exp(na) =[exp(a)]n Démonstration :Les démonstrations sont immédiates. La première se montre à l"aide de la fonction?du 1.1 et la dernière propriété se montre par récurrence.

1.5 Notation

Définition 1 :: Du fait des propriétés similaires entre la fonction exponentielle et la fonction puissance, on pose :

•e=exp(1)e≈2,718...•ex=exp(x)

On a ainsi les propriétés :

Remarque :On peut avoir une approximation du nombreeà l"aide de ce petit programme :

On trouve pour :

•P=10-2,E≈2,705

•P=10-3,E≈2,717

Variables:A,P: entiersE: réel

Entrées et initialisation

LireP

1→E

Traitement

pourIde 1 à 1/Pfaire

E(1+P)→E

fin

Sorties: AfficherE

PAULMILAN4 TERMINALES

2. ÉTUDE DE LA FONCTION EXPONENTIELLE

2 Étude de la fonction exponentielle

2.1 Signe

Théorème 4 :La fonction exponentielle est strictement positive surR Démonstration :On sait que exp(x)?=0 pour tout réel. De plus la fonc- tion exponentielle est continue car dérivable surR. S"il existait un réelatel que exp(a)<0, d"après le théorème des valeurs intermédiaires il existeraitun réel αtel que exp(α) =0 ce qui est impossible. La fonction exponentielle est donc strictement positive.

2.2 Variation

Théorème 5 :La fonction exponentielle est strictement croissante surR. Démonstration :Immédiat du fait que sa dérivée est elle-même et que l"expo- nentielle est strictement positive. ConséquenceComme la fonction exponentielle est strictement croissante, on peut écrire les équivalences suivante : Règle 1 :Soitaetbdeux réels, on a les équivalences suivantes : e a=1?a=0 e a=eb?a=be a>1?a>0 e aExemples :

•Résoudre dansRl"équation :e2x2+3=e7x

D"après les équivalences ci-dessus, l"équation est équivalente à:

2x2+3=7x?2x2-7x+3=0

On calcule :Δ=49-24 soitΔ=25=52, on obtient les deux solutions suivantes : x 1=7+5

4=3 etx2=7-54=12d"oùS=?12;3?

•Résoudre dansRl"inéquation suivante :e3x?ex+6 D"après les équivalences ci-dessus, l"équation est équivalente à:

3x?x+6?2x?6?x?3 soitS=]-∞;3]

PAULMILAN5 TERMINALES

TABLE DES MATIÈRES

2.3 Limites

Théorème 6 :On a les limites suivantes :

lim x→+∞ex= +∞et limx→-∞ex=0 ROCDémonstration :Soit la fonctionfsuivante :f(x) =ex-x.

Dérivons la fonctionf:f?(x) =ex-1

Comme la fonction exponentielle est strictement croissante, on a: f ?(x)>0?x>0 etf?(x)<0?x<0 On obtient alors le tableau de variation suivant : x f ?(x) f(x) -∞0+∞ 0+ 11 Du tableau de variation on en déduit :?x?Rf(x)>0 doncex>x or on sait que lim x→+∞x= +∞, par comparaison on a : lim x→+∞ex= +∞ En faisant le changement de variableX=-x, on obtient : lim eX=0

2.4 Courbe représentative

D"après les renseignements obtenus, on a donc le tableau de variation suivant : x exp ?(x) exp(x) 00 0 1 1 e

On obtient la courbe suivante :

PAULMILAN6 TERMINALES

2. ÉTUDE DE LA FONCTION EXPONENTIELLE

1234

1 2-1-2-3

e OT0 T1 y=ex

2.5 Des limites de référence

Théorème 7 :On a : limx→0e

x-1x=1 Démonstration :La démonstration découle de la définition de la dérivée en 0 appliquée à la fonctionex. lim x→0e x-e0 x=exp?(0) =exp(0) =1

Théorème 8 :Croissance comparée

lim x→+∞e x x= +∞et limx→-∞xex=0 Démonstration :Comme pour la limite deexen+∞, on étudie les variations d"une fonction. Soit donc la fonctiongdéfinie surRpar : g(x) =ex-x2 2

On calcule la dérivéeg?:g?(x) =ex-x

D"après le paragraphe 2.3, on a :?x?Rex>xdoncg?(x)>0

La fonctiongest donc croissante surR.

Org(0) =1 donc six>0 alorsg(x)>0. On en déduit donc que :

Pourx>0g(x)>0?ex>x2

2?exx>x2

On sait que lim

x→+∞x

2= +∞, par comparaison, on a :

lim x→+∞equotesdbs_dbs15.pdfusesText_21
[PDF] comment déterminer le domaine de définition d'une fonction

[PDF] fonction ln domaine de définition

[PDF] exp(-1)

[PDF] exercices corrigés domaine de définition d'une fonction pdf

[PDF] comment déterminer l'image d'une fonction

[PDF] comment trouver le domaine d'une fonction

[PDF] ensemble image maths

[PDF] loi organique des communes maroc

[PDF] loi organique 113-14 sur les communes maroc

[PDF] projet de loi organique 113-14 sur les communes

[PDF] les branches de linformatique pdf

[PDF] oiq salaire ingénieur junior

[PDF] définition monarchie

[PDF] cadre d'emploi adjoint administratif 2017

[PDF] cadre d'emploi adjoint administratif principal 2ème classe