[PDF] Cours darithmétique parant les olympiades internationales de





Previous PDF Next PDF



3ème - Arithmétique - Leçon 3ème - Arithmétique - Leçon

conséquent l'algorithme s'arrête. Dans l'algorithme d'Euclide le PGCD des nombres a et b est le diviseur de la division dont le reste est nul. Page 5. 3ème 



PGCD ET NOMBRES PREMIERS

Et choisir "GCD". TP info sur tableur : L'algorithme d'Euclide http://www.maths-et-tiques.fr/telech 



LALGORITHME DEUCLIDE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. L'ALGORITHME D'EUCLIDE. Objectif : Calcul du PGCD de deux nombres par l'algorithme d'Euclide.



Activité cours n°1 : recherche du PGCD Mathématiques - 3ème

60. METHODE 2 : ALGORITHME D'EUCLIDE. 1) Définition de la division euclidienne : soit a et b deux entiers naturels avec b non nul. La division euclidienne de 



Exercices de mathématiques - Exo7

Indication pour l'exercice 4 △. Le calcul du pgcd se fait par l'algorithme d'Euclide Euclide permet de calculer le pgcd par une suite de divisions ...



exercices de mathématiques 3ème PGCD

Calculer le plus grand commun diviseur (pgcd) de 73 470 et 17 360. On calcule le pgcd des nombres 73 470 et 17 360 en utilisant l'algorithme d'Euclide. 73 470 = 



Arithmétique Étude des nombres entiers Calcul du PGCD

PGCD(18;24) = 6. Propriété. Troisième méthode : Algorithme d'Euclide ou la méthode des divisions euclidiennes successives. Soient a et b deux nombres entiers 



3e Contrôle commun de mathématiques 6 / 12 / 2012 Éléments de

6 déc. 2012 D'où : PGCD (415; 581) = 83. • méthode 2 : avec l'algorithme d'Euclide : si r est le reste de la division euclidienne de a par b alors ...



[PDF] Algorithmes - Exo7 - Cours de mathématiques

• L'algorithme d'Euclide étendu pour pgcd(eϕ(n)) = 1 donne 7 × (−1457) + Un livre d'un niveau avancé (troisième année de licence) pour comprendre les ...



Arithmétique avec Excel : classe de troisième

3 oct. 2009 Algorithme d'Euclide : calcul du PGCD par divisions successives. Site Descartes et les Mathématiques : http://debart.pagesperso-orange.fr/.



PGCD ET NOMBRES PREMIERS

Et choisir "GCD". TP info sur tableur : L'algorithme d'Euclide http://www.maths-et-tiques.fr/telech 





Exercices de mathématiques - Exo7

Le calcul du pgcd se fait par l'algorithme d'Euclide et la "remontée" de l'algorithme permet d'obtenir U et V. Indication pour l'exercice 5 ?.



LALGORITHME DEUCLIDE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. L'ALGORITHME D'EUCLIDE. Objectif : Calcul du PGCD de deux nombres par l'algorithme d'Euclide.



livre-algorithmes EXo7.pdf

Une fonction en informatique est similaire à une fonction mathématique c'est un objet qui prend L'algorithme d'Euclide est basé sur le principe suivant.



Exo7 - Exercices de mathématiques

Soit f : E ? F une application et G un troisième ensemble ayant au moins Calculer pgcd(18



Cours darithmétique

parant les olympiades internationales de mathématiques. L'algorithme d'Euclide est une méthode efficace pour déterminer le pgcd de deux entiers donnés.



Cours de mathématiques - Exo7

1} s'obtient comme le reste k de la division euclidienne de a par n : a = bn + déjà étudié l'algorithme d'Euclide qui repose sur le principe que pgcd(a ...



Cours de mathématiques - Exo7

DIVISION EUCLIDIENNE ET PGCD. 3. • Soit d un diviseur de b et de r. Alors d divise aussi bq + r = a. Algorithme d'Euclide. On souhaite calculer le pgcd de a 



Les nombres et PGCD

Mathématiques. Troisième IV – Algorithmes de calcul du PGCD de deux nombres a et b. ... le reste de la division euclidienne de a par b.

Cours d"arithm´etique

Premi`ere partie

PierreBornsztein

XavierCaruso

PierreNolin

MehdiTibouchi

D´ecembre 2004

Ce document est la premi`ere partie d"un cours d"arithm´etique ´ecrit pour les ´el`eves pr´e-

parant les olympiades internationales de math´ematiques. Le plan complet de ce cours est :

1. Premiers concepts

2. Division euclidienne et cons´equences

3. Congruences

4.´Equations diophantiennes

5. Structure deZ/nZ

6. Sommes de carr´es

7. Polynˆomes `a coefficients entiers

8. Fractions continues

Cette premi`ere partie traite les quatre premiers chapitres. Les quatre derniers chapitres forment quant `a eux la deuxi`eme partie de ce cours. Contrairement `a la seconde partie, cette premi`ere partie se veut le plus ´el´ementaire

possible. Les notions abstraites, souvent plus difficiles `a assimiler, mais qui clarifient les id´ees

lorsqu"elles sont comprises, ne sont ´evoqu´ees que dans la seconde partie. Nous conseillons au lecteur de bien maˆıtriser ce premier tome avant de passer `a la lecture du second.

Les notions et les th´eor`emes introduits ici sont g´en´eralement tout `a fait suffisants pour

traiter les exercices propos´ees aux olympiades internationales de math´ematiques.

Vous trouverez `a la fin de chaque chapitre une s´erie d"exercices de difficult´e variable mais

indiqu´ee par des ´etoiles

1. Toutes les solutions sont rassembl´ees `a la fin du document.

Nous vous souhaitons bon apprentissage et bonne lecture. 1 Plus nous avons jug´e l"exercice difficile, plus le nombre d"´etoiles est important. 1

Liste des abbr´evations :

AMM American Mathematical Monthly

APMO The Asian Pacific Mathematics Olympiad

CG Concours g´en´eral

OIM Olympiades Internationales de Math´ematiques

SL Short List

TDV Tournoi Des Villes

Liste des notations :

?ensemble vide

Nensemble des entiers naturels (positifs ou nuls)

N ?ensemble des entiers naturels strictement positifs

Zensemble des entiers relatifs

Qensemble des nombres rationnels

Rensemble des nombres r´eelsPsymbˆole de sommation2Qsymbˆole de produit3 a|b adiviseb [x]partie enti`ere dex {x}partie d´ecimale dex pgcdplus grand commun diviseur a?bpgcd(a,b) ppcmplus petit commun multiple a?bppcm(a,b) a≡b(modN)aest congru `abmoduloN pun nombre premier v p(n)valuationp-adique den d(n)nombre de diviseurs positifs den

σ(n)somme des diviseurs positifs den

?fonction indicatrice d"Euler s b(n)somme des chiffres denen baseb π(n)nombre de nombres premiers inf´erieurs ou ´egaux `an a n...a0b´ecriture en baseb n!factorielle den:n! = 1×2× ··· ×n C k ncoefficient binomial : Ck n=n! k!(n-k)! u n≂vnles suites(un)et(vn)sont ´equivalentes 2 Une somme index´ee par l"ensemble vide est ´egale `a0.

3Un produit index´e par l"ensemble vide est ´egale `a1.

2

Table des mati`eres

1 Premiers concepts 4

1.1 Divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Valuationp-adique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Quelques fonctions arithm´etiques . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Nombres rationnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Division euclidienne et cons´equences 24

2.1 Division euclidienne et d´ecomposition en baseb. . . . . . . . . . . . . . . . 24

2.2 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Algorithme d"Euclide ´etendu et th´eor`eme de B´ezout . . . . . . . . . . . . . . 28

2.4 Lemme de Gauss et cons´equences . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Congruences 37

3.1 D´efinition, premi`eres propri´et´es . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Crit`eres de divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Ordre d"un ´el´ement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Th´eor`eme chinois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Congruences modulop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Congruences modulopn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Coefficients binomiaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4

´Equations diophantiennes 56

4.1 Quelques r´eflexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Utilisation des congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Descente infinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4´Equations de degr´e2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5´Equations de degr´e3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Corrig´e des exercices 75

5.1 Exercices de"Premiers concepts». . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Exercices de"Division euclidienne et cons´equences». . . . . . . . . . . . . 103

5.3 Exercices de"Congruences». . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Exercices de"´Equations diophantiennes». . . . . . . . . . . . . . . . . . . 143

3

1 Premiers concepts

Cette section, comme son nom l"indique, pr´esente le concept de base de l"arithm´etique,

`a savoir la divisibilit´e. On introduit ensuite les nombres premiers ce qui permet d"´enoncer le

th´eor`eme fondamental de l"arithm´etique (c"est-`a-dire la d´ecomposition en facteurs premiers)

dans lequel les nombres premiers jouent le rˆole de briques ´el´ementaires pour la fabrication

des nombres.

1.1 Divisibilit´e

D´efinition 1.1.1Siaetbsont deux entiers, on dit queadiviseb, ou quebestdivisible para, s"il existe un entierqtel queb=aq. On dit encore queaest undiviseurdeb, ou que best unmultipledea. On le notea|b.

Propri´et´es

+Siaetbsont deux entiers avecb?= 0,bdiviseasi et seulement si la fractiona b est un entier. +Tous les entiers divisent0, et sont divisibles par1. +Un entiernest toujours divisible par1,-1,net-n. +Sia|b, etb|c, alorsa|c. +Sia|b1,b2,...,bn, alorsa|b1c1+b2c2+...+bncn, quels que soient les entiersc1,c2,...,cn. +Siadivisebetb?= 0, alors|a|6|b|. +Siadivisebetbdivisea, alorsa=±b. +Siaetbsont deux entiers tels quean|bnpour un entiern>1, alorsa|b.

Toutes les propri´et´es list´ees pr´ec´edemment sont imm´ediates, `a l"exception de la derni`ere dont

la d´emonstration n"est pas triviale sans bagage arithm´etique. Une preuve possible consiste

`a utiliser la caract´erisation de la divisibilit´e par les valuationsp-adiques (voir paragraphe

1.3). Voyons imm´ediatement deux exercices qui montrent comment on peut manipuler la no- tion de divisibilit´e :

Exercice

: Soientxetydes entiers. Montrer que2x+ 3yest divisible par7si et seulement si5x+ 4yl"est.

Solution

: Supposons que7divise2x+3y, alors il divise6(2x+ 3y)-7(x+ 2y) = 5x+4y. R´eciproquement si7divise5x+ 4y, il divise6(5x+ 4y)-7(4x+ 3y) = 2x+ 3y.⎷

Exercice

: Pour quels entiersnstrictement positifs, le nombren2+ 1divise-t-iln+ 1?

Solution

: Sin2+1divisen+1, comme tout est positif, on doit avoirn2+16n+1, ce qui n"est v´erifi´e que pourn= 1. On v´erifie ensuite quen= 1est bien solution.⎷ 4

Parties enti`eres

D´efinition 1.1.2Sixest un r´eel, on appellepartie enti`eredex, et on note[x], le plus grand entier inf´erieur ou ´egal `ax. Ainsi, on a[x]6x <[x] + 1. Remarque.On d´efinit aussi lapartie d´ecimaledex, comme la diff´erencex-[x]. La partie

d´ecimale dexest souvent not´ee{x}. Cette notion est moins utilis´ee que la notion de partie

enti`ere et les conventions de notations sont moins usuelles `a ce propos : lors d"un exercice,

ou d"un expos´e, il est toujours de bon goˆut de commencer par pr´eciser les notations qui vont

ˆetre employ´ees par la suite.

Notons qu"il fautˆetre prudent avec les nombres n´egatifs : autant pour les nombres positifs, la partie enti`ere correspond au nombre auquel on retire ses chiffres apr`es la virgule, autant

ce n"est pas le cas pour les nombres n´egatifs. En effet, si on suit la d´efinition, on voit par

exemple que[-3,5] =-4.

Les parties enti`eres et parties d´ecimales ob´eissent `a quelques propri´et´es ´el´ementaires que

nous listons ci-dessous :

Propri´et´es ´el´ementaires

+On a toujoursx= [x] +{x}. +Pour tout r´eelx, on ax-1<[x]6x +Sixest entier,[x] =xet{x}= 0. Et r´eciproquement si l"une des deux ´egalit´es est v´erifi´ee, alorsxest entier. +[-x] =-[x]-1sauf sixest entier, auquel cas[-x] =-[x]. +Sixetysont deux r´eels,[x] + [y]6[x+y]6[x] + [y] + 1. +Sim >0est un entier, alors il y a exactement[x m ]multiples demcompris entre1et x.

La d´emonstration des propri´et´es consiste en de simples manipulations de la d´efinition et

principalement de l"in´egalit´e[x]6x <[x] + 1. Elle est laiss´ee au lecteur. On remarquera que tr`es souvent les questions faisant intervenir des parties enti`eres se r´esument `a de la manipulation d"in´egalit´es comme le montre par exemple l"exercice suivant :

Exercice

: On suppose que4n+ 2n"est pas le carr´e d"un nombre entier. Montrer que pour n>0, on a :h⎷ n+⎷ n+ 1i =h⎷

4n+ 2i

Solution

: Remarquons tout d"abord que l"on a toujours l"in´egalit´e : n+⎷ n+ 1<⎷ 4n+ 2 En effet, en ´elevant au carr´e, on a `a comparer2n+ 1 + 2⎷ n

2+net4n+ 2, soit2⎷

n 2+n

et2n+ 1et l"in´egalit´e devient ´evidente apr`es une nouvelle ´el´evation au carr´e.

Il reste `a prouver qu"il n"existe aucun entierktel que : n+⎷ n+ 1< k6⎷ 4n+ 2 5 soit, encore en ´elevant au carr´e qu"il n"existe aucun entierktel que :

2n+ 1 + 2⎷

n

2+n < k264n+ 2

Mais il est clair que4n+ 1<2n+ 1 + 2⎷

n

2+net un tel entierkv´erifiraita fortiori

4n+ 1< k264n+ 2. Commekest entier, il vient forc´ementk2= 4n+ 2, mais cela n"est

pas possible puisque l"on a suppos´e que4n+ 2n"´etait pas le carr´e d"un entier.⎷ Remarque.En fait,4n+ 2n"est jamais le carr´e d"un entier. En effet, le nombre4n+ 2est

pair, et s"il ´etait le carr´e d"un entier, il serait le carr´e d"un entier pair. Mais alors4n+ 2

devrait ˆetre un multiple de4, ce qui n"est, `a l"´evidence, pas le cas. L"´egalit´e pr´ec´edente de

parties enti`eres est donc valable pour tout entiern>1, sans hypoth`ese suppl´ementaire. Une propri´et´e amusante des parties enti`eres qui montre ´egalement que parfois (souvent)

les manipulations d"in´egalit´es ne sont pas faciles est le th´eor`eme de Beatty que voici :

Th´eor`eme 1.1.3 (Beatty)Soientαetβdeux r´eels strictements positifs. On noteSα

(resp.Sβ) l"ensemble des entiers strictement positifs qui s"´ecrivent sous la forme[nα](resp.

[nβ]) pour un certain entiern. Les ensemblesSαetSβforment une partition deN?si, et seulement siαetβsont irrationnels et v´erifient 1 +1 = 1. D´emonstration.Commen¸cons par supposer queαetβsont des irrationnels v´erifiant1 1 = 1. Soitkun entier strictement positif. Il est dans l"ensembleSαsi et seulement s"il existe un entierntel que : nα-1< k < nα

l"in´egalit´e de droite ´etant stricte carαest suppos´e irrationnel. L"´equation se transforme et

donne :k ff

¡ n ¡k

ff +1 ff ,k ff +1

£contient un entier. De mˆeme

k?Sβsi et seulement si l"intervallei k fi ,k fi +1 h contient un entier. ff ,k ff + 1£est de longueur1et ses bornes sont irrationnelles, donc il contient un et un seul entiern. Sin ¡ k+ 1-n fi +1

et donck?Sβ. Sik´etait `a la fois ´el´ement deSαet deSβ, il y aurait un entier dans

ff ,k ff +1

£et un dans l"intervallei

k fi ,k fi +1 h et donc par le mˆeme raisonnement ff ,k ff + 1£, ce qui n"est pas possible. 6 R´eciproquement, supposons queSαetSβforment une partition deN?. Consid´erons un entierkstrictement positif. Il y a£k ff y ah k fi i entiers dans{1,...,k}qui sont dansSβ. Du fait de la partition, il vient : ·k ff +·k fi =k pour toutk. En faisant tendrekvers l"infini, il vient : 1 +1 = 1 ce qui d´emontre la deuxi`eme condition. Supposons maintenant par l"absurde queαsoit rationnel. Alors il en est de mˆeme deβ d"apr`es la relation pr´ec´edente.´Ecrivonsα=a b etβ=c d . L"entieracest ´el´ement deSα(en prenantn=bc) et ´egalement ´el´ement deSβ(en prenantn=ad), ce qui est contradictoire.

PgcdetPpcm

Ce paragraphe introduit les d´efinitions depgcdetppcmqui sont deux notions fonda-

mentales de l"arithm´etique et en donne leurs principales propri´et´es. Les d´emonstrations qui

ne sont pas ´evidentes sont report´ees au chapitre 2 et seront vues comme cons´equence de la

division euclidienne. D´efinition 1.1.4Soientaetbdeux entiers non tous deux nuls. L"ensemble des diviseurs communs deaet debest fini et non vide, il poss`ede donc un plus grand ´el´ement appel´eplus grand commun diviseur(pgcd) deaetbet not´epgcd(a,b). Lorsquepgcd(a,b) = 1, on dit queaetbsontpremiers entre eux. De mˆemeaetbposs`edent un plus petit multiple commun positif, on l"appelle leplus petit commun multiple(ppcm) deaet debet on le noteppcm(a,b).

Propri´et´es

+Sid=pgcd(a,b), alorsndiviseaetbsi et seulement sindivised. +Sim=ppcm(a,b), alorsnest un multipleaet debsi et seulement sinest un multiple dem. +Sia,betnsont des entiers non nuls etn >0, alorspgcd(na,nb) =npgcd(a,b). Si de plusndiviseaetb, alorspgcd¡a n ,b n

¢=1

n pgcd(a,b). +Sid=pgcd(a,b), on peut ´ecrirea=da?etb=db?poura?etb?des nombres premiers entre eux. +Siaetbsont des entiers, l"´egalit´epgcd(a,b) =pgcd(a,a+b)est toujours v´erifi´ee lorsqu"elle a un sens. En particulier, lepgcdde deux nombres cons´ecutifs est1, et plus g´en´eralement, lepgcddeaet dea+nest un diviseur positif den. +Plus g´en´eralement, six,y,a,b,a?etb?sont des entiers alors : En particulier si|ab?-ba?|= 1, alorspgcd(x,y) =pgcd(ax+by,a?x+b?y). 7

Ces propri´et´es sont ´el´ementaires. Souvent, pour prouver l"´egalit´e de deuxpgcd, on

montre que chacun despgcddivise l"autre. C"est la m´ethode que l"on utilise majoritai- rement ici. Expliquons comment on proc`ede pour montrer qu"unpgcden divise un autre en donnant un preuve de la derni`ere propri´et´e qui est la plus difficile : notonsd=pgcd(x,y). Alorsddivisexetyet donc il diviseax+byeta?x+b?ypuis leurpgcd. De mˆeme, soit d ?=pgcd(ax+by,a?x+b?y), alorsd?diviseb?(ax+by)-b(a?x+b?y) = (ab?-ba?)xet a ?(ax+by)-a(a?x+b?y) = (a?b-b?a)y. Ainsid?divisepgcd((ab?-ba?)x,(a?b-b?a)y) = |ab?-ba?|pgcd(x,y), ce qui conclut. Citons ´egalement des r´esultats classiques et souvent assez utiles :

Propri´et´es

+Siaetbsont des entiers non nuls alorspgcd(an,bn) =pgcd(a,b)npour tout entier n>0. +Sia,betcsont des entiers non nuls, on a : pgcd(a,ppcm(b,c)) =ppcm(pgcd(a,b),pgcd(a,c)) ppcm(a,pgcd(b,c)) =pgcd(ppcm(a,b),ppcm(a,c)) +Th´eor`eme de B´ezout.Siaetbsont des entiers premiers entre eux, alors il existe desquotesdbs_dbs45.pdfusesText_45
[PDF] algorithme exemple PDF Cours,Exercices ,Examens

[PDF] algorithme exercice DM 2nde Mathématiques

[PDF] algorithme exercice et solution PDF Cours,Exercices ,Examens

[PDF] ALgorithme exercice long 2nde Mathématiques

[PDF] Algorithme exercice seconde 2nde Mathématiques

[PDF] algorithme exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algorithme exo long 2nde Mathématiques

[PDF] algorithme fibonacci PDF Cours,Exercices ,Examens

[PDF] Algorithme fonction minimum 2nde Mathématiques

[PDF] algorithme fonction procedure exercice corrigé PDF Cours,Exercices ,Examens

[PDF] algorithme fonction procedure exercice corrigé pdf PDF Cours,Exercices ,Examens

[PDF] Algorithme fonctions affines 2nde Mathématiques

[PDF] Algorithme fonctions maths TERMINALE S Terminale Mathématiques

[PDF] algorithme glouton java PDF Cours,Exercices ,Examens

[PDF] algorithme hauteur d'un arbre binaire PDF Cours,Exercices ,Examens