[PDF] Towards Detection of Orthogonal Planes in Monocular Images of





Previous PDF Next PDF



LESSON III: ORTHOGONALITY

G – Perpendicular lines and planes. A line is perpendicular or orthogonal to a plane if it is perpendicular to two non-parallel.



Chapter 9 Orthogonal Latin squares and finite projective planes

Orthogonal Latin squares and finite projective planes. Math 4520 Spring 2015. 9.1 Latin squares. Suppose that you wish to make a quilt with 9 patches in a 



The orthogonal planes split of quaternions and its relation to

The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations. 1. Eckhard Hitzer. Osawa 3-10-2 Mitaka 181-8585



ORTHOGONAL PRINCIPAL PLANES

ORTHOGONAL PRINCIPAL PLANES. Peter Filzmoser department of statistics probability theory and actuarial mathematics vienna university of technology



ORTHOGONAL PRINCIPAL PLANES

ORTHOGONAL PRINCIPAL PLANES. Peter Filzmoser department of statistics probability theory and actuarial mathematics vienna university of technology



Towards Detection of Orthogonal Planes in Monocular Images of

novel algorithm for the extraction of dominant orthogonal planar structures from monocular a non-calibrated camera into orthogonal planes



OneTouch 4.6 Scanned Documents

IF TWO PLANES ARE NOT CANONEL J. THEN THEY MUST INTERSECT (IN A LINE). SPECIFIC COMMENTS: (a) TWO LINES PERPENDICULAR TO SAME PLANE. ARE PARALLEL.



Completed Local Structure Patterns on Three Orthogonal Planes for

complementary texture information in three orthogonal planes. Evaluations on different datasets of dynamic textures (UCLA. DynTex



Face expression recognition using Local Gabor Binary Pattern

18 thg 5 2019 Orthogonal Planes (LGBP-TOP) and Support Vector Machine (SVM) method. To cite this article: R R K Dewi et al 2019 J. Phys.: Conf. Ser.



Real-time orthogonal mode scanning of the heart. I. System Design

6 thg 6 2022 A necessary precursor to real-time three-dimensional echocardiographic imaging is the ability to obtain mul- tiple planes of acoustic data ...



[PDF] DROITES ET PLANS DE LESPACE - maths et tiques

Propriété : Deux plans sont perpendiculaires lorsque l'un contient une droite orthogonale de l'autre Méthode : Démontrer que des droites sont orthogonales



[PDF] Orthogonalité de lespace - Meilleur En Maths

On dit que deux droites de l'espace sont orthogonales si leurs parallèles issues d'un point quelconque de l'espace sont perpendiculaires



[PDF] Droites et plans de lespace - Maths au LFKL

- Deux droites perpendiculaires sont orthogonales La réciproque n'est pas vraie car deux droites orthogonales ne sont pas nécessairement coplanaires et



[PDF] 1) Droites orthogonales 2) Orthogonalité dune droite et dun plan

Definition : Deux plans P et P' de E sont dits perpendiculaires si leurs vecteurs normaux sont orthogonaux Propriété : Un plan P est perpendiculaire à un plan 



[PDF] Plans et Droites

Droites perpendiculaires à un plan Une droite D et un plan P seront dits orthogonaux si la droite D est orthogonale à toutes les droites du plan P



[PDF] TS Synthèse ch G1 : Géométrie dans lespace 1

Définition : Une droite est perpendiculaire (orthogonale) à un plan P si elle est orthogonale à deux droites sécantes de ce plan Propriété 



[PDF] GEOMETRIE DANS LESPACE - Plus de bonnes notes

21 mar 2021 · Deux plans sont perpendiculaires si et seulement s'il existe une droite du premier plan qui est orthogonale à une droite du deuxième plan



[PDF] Droites et plans de lespace

On dit que deux plans sont perpendiculaires si chacun contient une droite perpendiculaire `a l'autre Il suffit pour cela que l'un d'eux contienne une droite 



[PDF] TS Exercices sur lorthogonalité de lespace

On peut utiliser le symbole ^ pour désigner : - deux droites orthogonales ou - une droite et un plan orthogonal à cette droite ou - deux plans 



[PDF] Géométrie dans lespace notions de base : points droites plans

Quand deux droites sont orthogonales tout plan orthogonal à l'une est parallèle à l'autre Quand deux plans sont orthogonaux toute droite parallèle à l'un n' 

:
imagesofindoor environments Abstract - Inthispaper,wedescribethe componentsofa novelalgorithmforthe extractionofdominantorthogonal planarstructuresfrom monocularimagestakeninindoor envi- vanishingpointsandvanishinglinesimposed bythefrequently observed dominanceof threemutually orthogonalvanishing directionsinman-madeworld.Vanishingpointsarefound by an improvedapproach,takingno assumptionson knowninternal or externalcameraparameters.Theproblemofdetecting planarpatchesisattacked using aprobabilisticframework, novelformulationfusing geometricinformationobtainedfrom vanishingpointsandfeatures,suchasrectanglesand partial by animageover-segmentation. largely varyingcharacteristicsconcerningimagequality and scene complexity.Experiments showthat themethod,despite mance comparesfavorablytothestate-of-the-art.

I.INTRODUCTION

Inthelastyearstheinterest in designingmobilerobotsfor domestictaskshasbeenrapidly growingwithintherobotics community.Besidesbeinganimportantfield ofitsown right,buildingscalable andaffordableplatformsinresponse tothediverse applicationscenariostargetedatbyindustry representsatempting goalfor roboticsresearch. Inthiscontext,solutions solely based on visualsensory inputaremovingstillmoreintothe centerofinterest.On onesidethereisthe economicalfactorpushing down prices of robotsbyavoidingexpensivesensors,ontheotherhand, imagesorvideoacquired bycamerasalreadycontainrich informationto harvestfortasks suchas sceneunderstanding, localization,and navigation.Consequently,duringthelast yearsthework on vision-basedsystemshasemergedasa view.Thereisanenormouseffort,partially propelled bythe cognitivevisionresearchfield,to perceive and understanda scenejustfromvisual information. Inthispaper,wedescribe anovelapproach devisedto help arobot to understandthe contentofascene,givenasingle image.To bemorespecific,wepropose amethodfordecom- 1 outduring his stayat theinstitution ofothertwoauthors.

2H.WildenauerandM.Vincze arewiththeAutomationandCon-

trolInstitute,Faculty ofElectricalEngineeringandInformationTech- nology,ViennaUniversity ofTechnology,Austria,{wildenauer, vincze}@acin.tuwien.ac.at. (a) (b) (c) (d) Fig.1.Proposedsequentialchainleadingto detection oforthogonal planesinamonocularimage.(a)Theinput image(844×1126 pixels) with vanishinglinesdepicted.(b)Detectedlinesconsistentwiththree automaticallyestimated orthogonalvanishing points.(c)Detected partial andcompletequadrilateralsutilizingthevanishing pointsandlinespointing tothem.(d)Finalsegmentation ofplanesbased onaMarkovRandomField formulationemploying vanishing points,lines,and quadrilateralsegments. anon-calibratedcamera,into orthogonalplanes,seeFig.1.

Findingtheseplanesintheimage cansignificantlyaida

robot inselflocalization,navigationandfurther recognition designamethodfornon-calibratedacquisitionsettingsto be abletoalso handle casesforwhicheithertheinternalcamera parametersareunknown,orarelikelyto beimprecise.In experimentsit is shownthat themethodisabletoextract asignificantamountofstructural informationfromasingle monocularimage.However,alatermerging ofentireimage sequenceswillgreatlycontributetoastabilization ofthe wholeprocess. ingtosolveitonamoreglobal level than before.Thepaper isinits spiritand goalsmostsimilartotherecentstate-of- the-artwork ofHoiemet.al.[4].They uselearntappearance modelsbased on variousgeometric,color,andtexture cuesto partitionanimageintocoarse3Dsurface entities.Weshow thatevenwithout learningand byapplyinglesscueswe can stillcompetewiththeirmethod.2008 IEEE International Conference on

Robotics and Automation

Pasadena, CA, USA, May 19-23, 2008978-1-4244-1647-9/08/$25.00 ©2008 IEEE.999

Thenovelty ofthepaperistwo-fold.First,anadopted

RANSAC-basedline clusteringstagefordetecting vanishing instability overprevioustechniques.Second,weformulate theproblemofdetecting planesinamonocularimageusing the estimated vanishing pointsinaprobabilisticframework based onsearchingformaximumaposterioriprobability (MAP)ofaMarkovRandomField(MRF).

In ourapproachwepartiallyexploit theso-calledMan-

hattanworldassumption.I.e.,thefrequently observed dom- inanceofthreemutually orthogonalvanishing directionsin man-made environments[5].Motivated byideaspresented in[6],we adoptedaRANSAC-basedline clusteringtech- niquewhichisabletofind dominantvanishing directions imposed bya calibratedcameraintoaccount;however internalcameraparametersdo nothaveto beknowna prioriastheyare estimated duringthe clustering process. Thevanishing pointestimationisfollowed byasearchfor perspectively distortedrectangles-basiclandmarksinman- made environmentsthatarehelpingfurthertoset thepriors forourMRF-based planedetectionmethod.Wepropose howthe estimated vanishing points should beutilizedfor asuitablesetting ofweightsforedgesand verticesofthe graphrepresentingtheMRFwe areoperating on.

Themethodisintent to be applied onmobileplatforms

wherereal-time,orat leastclosetoreal-timeperformance, tothat,sotheycan be efficientlycodedtofulfillsucha requirement. estimation ofvanishing pointsandlinespointingtothem isexplainedinSec.II followed bySec.IIIwithashort description ofthedetection ofquadrilateralstructures.An Explanation ofourMRF-basedapproachforfinal localiza- tion ofplanesinanimageisgiveninSec.IV.Wesummarize the entire algorithminSec.Vandreportexperimentalresults inSec.VI.

II.VANISHINGPOINTDETECTION

Man-made environmentsgenerallyexhibitstrongregular- ityinstructure and oftenmany parallel linesarepresent.In suchsettings,vanishing pointsprovideusefulvisualcuesfor deducinginformationabout the3Dstructureofanimaged scene.Furthermore,iftwo ormorevanishing pointsare found ofwhichtheunderlyingstructure"sorientationsare assumedto beorthogonal,then,takingmildassumptions, internalcameraparameterscan be estimated. processingstagesandtheline errormodel in useisgiven.

A.Linedetection

Initially,connectededgesegmentsarefound utilizinga directionaledgelinking,line candidatesare extracted using Fig.2.Comparison ofthemethod[8]and ourproposedalgorithmon animageofa clutteredscene.Linesetscorrespondingtoeach ofthree detected vanishing points,differentiatebycolor,areshown.Noticethat the orthogonalsetofvanishing points,depicted bymembershipsoflinesto them,wasestimatedincorrectly bythemethod[8],butcorrectly by our algorithm.Whitelinesintheleft image correspondto noisylines,not associatedwithany vanishing point. segmentsarerefined byaTotalLeastSquaresfit tothe edge segmentspixelcoordinatesandshort linesorlineswithlow fitting qualityarerejected[8].

Forimageswithlowresolutionasubstantial increasein

thenumberand quality ofdetectedlinesegmentscan be achieved by up-samplingtheimagebyfactortwo priorto edgedetection[9].

B.RANSAC-basedline clustering

Inthis stagevanishing pointhypothesesarerepeatedly generatedthroughtheintersection oflines.Theintersection pointshavingalarge enoughsetoflinespointingtowards themarelikelyto betruevanishing pointsandarereconsid- eredinfurtherprocessingstages.

1)Linesegmenterror:To quantifythe errorofaline

segmentmeetingavanishing point,anideal linefromthe segment"smidpoint tothevanishing point isconstructed andthenormaldistanceofonesegmentendpoint tothis lineismeasured.Formally,thisdistance can bewrittenas d and¯aiisitsrootpointontheideal line.Thedescribedmodel isbased onthe assumptionthat thereislittlevariationin themidpointofthelinesegment,asit isthemean ofthe involved pixelpositions.Othererrormodelscan befound in[10],[11].

2) IterativeRANSAC:Sincethe actualmixturefraction

oflinesbelongingto differentvanishing pointsisunknown, we adopt the adaptivevariantproposedin[12].Specifically, werunthe algorithmseveral timesoverthedatasetand beforethenext trial.Aftereachtrial,thevanishing point positionisrefined byapplyingKanatani"srenormalization scheme[13]totherespective consensus set.Werejectnewly detected vanishing pointsiftheyliewithintheuncertainty of previously detected onesutilizingtheteststatisticsproposed in[6].Here,however,we adoptedthevanishing pointcovari- ancematricesobtained byrenormalization.Theiterationis stopped,ifnomore consensus setswitha cardinalityabove apredefinedthresholdarefound. onthe complexity ofthescenethedescribedclustering typicallyresultsin numbersofthreeuptoten vanishing point1000 candidates.Fromthis setwe exhaustivelyselectvanishing point triplesandretain onlythosewithapproximately or- theonehavingthelargest totalconsensus set ischosenas

Inthe caseofunknowninternalcameraparameters,the

camera calibration necessaryfortheorthogonalitytestcan be carried out individuallyforeachtripleofvanishing points. Forthiswehave chosenthe composite calibrationmethod describedin[13],assumingsquarepixelsandthe camera"s principlepoint to belocatedinthe centeroftheimage.

Ourexperimentshaveshownthatafurther refinementof

itsposition oftencaused unstable calibrationresults,thuswe did notconsideritfurther.

C.Comparisonto otherknownmethods

In preliminaryexperiments,we compared ourmethodto

provided bythe authors.Wefound ouralgorithmto give

III.QUADRILATERALDETECTION

Humanmade environmentscontainmanyrectangular

structures.These,depending on occlusionsandthe camera"s field ofview,areprojectedascompletequadrilateralsor featuresrepresentstrong visualcuesforthedetection of planarsurfacesandconsequentlyareofaidtothetask of scenereconstructionand understanding.

In ourworkweuse aperspectiverectangledetection

methodrelatedtothe approach of [1],however,applyinga withavanishingline,i.e.,thetwo vanishing pointsgenerat- ingit,aregrouped by principlesofproximityandcontinuity andaprobabilisticinferenceisusedtofind hypotheses forquadrilateral-shapedstructuresinthegraph.On ofthe majoradvantagesofourapproachisthat itdoesnotonly detectperspectively distortedrectangles,butalsosub-parts iftheyare compatiblewiththeinitialplane-hypothesis.For anexampleofthefeaturesfound,seeFig.1.

Asthismethodiscurrently underareviewing process,

furthertechnicaldetailswillbeomitted here.However,it can be easilyreplacedwith othertechniques,suchasthe onepresentedin[2],[15].

IV.MRFBASEDPLANEDETECTION

Having detected vanishing pointsandlinespointingto themwewant toassigntoeach pixel inanimageits3D orientationw.r.t.toa camera coordinatesystem.Aswe assume aManhattanworldstructure,thisisequivalent to assign oneofthreelabels,where eachlabelcorrespondsto oneofthreeorthogonalplanes.

Tosolvetheproblemonaglobal level,i.e.toallow

orientationsandrelationsbetween neighboring pixels simul- taneously,weformulatetheprobleminafully probabilistic objecttwith nodesxtobjectt? edgeswithgtt?(xt,xt?) g t(xt=1)gt(xt=2)g t(xt=3) Fig.3.Anexample3×4 grid graphGfor|X|=3labelswithsymbols explainedinthetext.AlabelingL,i.e.solution,fromEq.(2)is shown by aredthicksubgraph.Imageprovided bycourtesy ofT.Werner [17]. framework;as searchingforamaximumposterior (MAP) configuration oftheMarkovRandomField(MRF) [16].It hasbeenshown[17]that thesolutioncan befoundasa thesocalledlabeling orMax-sumproblemofsecond order -

We assume anMRF,i.e.,agraphG=?T,E?,consisting of

adiscretesetTofobjects(intheliterature alsocalledsites, orlocations)andasetE??|T| 2? ofpairsofthoseobjects.

Each objectt?Tisassignedalabelxt?XwhereXis

label toeach object,represented bya|T|-tuplex?X|T| withcomponentsxt.

AninstanceoftheMax-sumproblemisdenoted bythe

triplet(G,X,g),wherethe elementsgt(xt)andgtt?(xt,xt?) ofgare calledqualities.Thequality ofalabelingxisdefined as

F(x|g)=?

tg t(xt)+? {t,t?}g tt?(xt,xt?).(1)

SolvingtheMax-sumproblem meansfindingthesetof

optimal labellings L

G,X(g)=argmax

x?X|T|F(x|g).(2) Fig.3 depictsthesymbolsandtheprobleminamoreintuitive way onasimplegrid graph.Recently,veryefficientalgo- relaxationanditsLagrangian dual,originally proposed by Schlesingerin 1976[18],hasbeenreviewed[19],[17],[20].

A.Graphentities

toMRFbasedmethodsistoencode allpossiblepriors partitioninganimageinto geometricallyandcolorcoherent regionsasFig.1shows.

Webuildagraph onan over-segmentedimage,i.e.,on

superpixels,seeFig.4,to keeptherunningtimeinreasonable colortogether.Theuseofsuperpixels significantlyreduces1001 information.Simplyreducingtheimagesize and building anMRFon pixelstoavoidthelarge complexityasimple- mentedinmanyapproachesleadstolosing detailsand high

SpanningTreebasedmethod byFelzenszwalb[21],giving

us,byappropriatesetting ofparameters,500-800regionson average.However,any otherover-segmentationcan beused. i.e.thesetE,are established betweeneachtwo neighboring superpixels.Thenumberofnodes(labels)Kis4,that is, weuseonelabelforeach orthogonalplane and onelabel thereisnotenoughinformationto decidewhich planethe superpixelbelongsto. Eachedgegtt?(xt,xt?)andeach objectnodegt(xt)is set accordinglytothesmoothnessand datatermrespectively, thegraph,theMax-sumsolver [17]isrunto obtaina particularlabelxtforeachsuperpixelt.

B.Smoothnessterm

bond ofneighboringsuperpixels.In ourcasewetakeinto account the colordifferencebetweensuperpixelsandthe straightnessofthe common boundary.Thiscan bewritten asfollows g α<0isaparameterpre-set to-10.Werepresentutinthe ofthestandardRGBspace.Ssttt?=P N ilength linei lengthboundaryisasum oflengthsofNlinesfittedtotheshared boundary between A,normalized bythelength oftheboundary.Theparameter βcontrollingtheinfluenceofthesmoothnessterm,was set to 0.5in ourexperiments. superpixelswithsimilarcolorandjagged boundaries.Such jagged boundariesareusually producedaccidentally dueto weak gradients[21]andthereforedo notcorrespondtoreal splitsoftwosuperpixelpatchesinthescene.

C.Dataterm

Thedatatermgt(xt)encodesthequality ofassigning

alabelxfromthesetXtoan object/superpixeltinthe graph.Thequalitymeasureshowthesuperpixel itselfsuits to particularclassmodels,in ourcase,tolieon oneofthe orthogonalplanes.

Foreachsuperpixel4 numbersareneededto beset,

i.e.,howlikelyisthat thesuperpixel ismarked by oneof fourlabels.Thefirst threelabels standforthebeliefthat asuperpixel lieson oneofthethreeorthogonalplanes; the regioncorrespondsto oneobject inthe constructed graph.Right:The smoothnessterm.Boundary-colorencodesthepenaltyset inthegraph betweentheobjectscorrespondingtotwo neighboringsuperpixels.Darker coloring denoteslesspenalization.Note,thatstraightboundarysegments arepenalizedstronger.

The consistency ofasuperpixel toaplaneisexpressed

via adeviation ofgradientorientationsofthepixelsalong theboundary ofthesuperpixel totwo vanishing points correspondingtothatplane.Forcomputation ofthegradient probability ofthepixel lying onanedge,themembership to oneofthethreevanishing points,andtheprobability of being noise.Wetakeintoaccountonlythosepixelshaving aprobability ofbeing onanedge above a certainthreshold.

Then,anormalized histogramht(y)withfourbinsy=

{1,2,3,4}iscomputedfromvanishing pointmemberships fourth binaccumulatespointsclassifiedto beonanedge, however,notconsistentwithany vanishing pointdirection. Finally,the consistency ofthesuperpixelwitheachlabel is setasquotesdbs_dbs35.pdfusesText_40
[PDF] exercices corrigés orthogonalité dans lespace

[PDF] séquence droites parallèles cm1

[PDF] séquence droites parallèles cm2

[PDF] situation problème droites perpendiculaires

[PDF] comment tracer des droites parallèles cm1

[PDF] définition d'une médiatrice dans un triangle

[PDF] définition bissectrice d'un triangle

[PDF] droite remarquable triangle

[PDF] droit des beaux parents 2017

[PDF] droit du beau pere en cas de deces de la mere

[PDF] les femmes dans les champs pendant la première guerre mondiale

[PDF] la vie quotidienne des civils pendant la premiere guerre mondiale

[PDF] les femmes pendant la première guerre mondiale cm2

[PDF] les femmes et la grande guerre

[PDF] le role des femmes pendant la première guerre mondiale