[PDF] Cours de Statistiques inférentielles





Previous PDF Next PDF



Comptabilité de gestion

«Théorie des sondage: échantillonnage et estimation Statistique inférentielle (S3): statistique inductive ... Exercices d'applications. • Exercice1.



Exercices et problèmes de statistique et probabilités

Corrigés des exercices . Chapitre 2 Convergences et échantillonnage................................ 29 ... 3.2 Estimation statistique.



Exercices Corrigés Statistique et Probabilités

Voir exercice 1 de l'examen précédent (même méthode de calcul). Corrigé de l'exercice2 : Un échantillon aléatoire de 1367 diplômes d'université délivrés en 



Cours de Statistiques inférentielles

connues d'une population à partir d'un échantillon issu de cette population. Ref : Statistique exercices corrigés



CORRIGE DES EXERCICES : Distributions déchantillonnage

variance (écart-type) est faible d'où une plus grande précision dans l'estimation (cf tableau ci-dessous colonnes 3 et 4). distribution de la variance empirique.



Estimation et intervalle de confiance

Exercices : Martine Quinio. Exo7. Estimation et intervalle de confiance. Exercice 1. Un échantillon de 10000 personnes sur une population étant donné 



Saïd El Melhaoui

S3. 2010 2012. " Statistique Descriptive. 1erAnnée. 2004-2005. ENCG (A.R.). Probabilités Estimation et Échantillonnage: exercices et exa- mens corrigés.



Statistiques descriptives et exercices

Rappels de cours et exercices corrigés sur la statistique descriptive Sachant que la taille de l'échantillon N = 189 retrouver les effectifs pour ...



THESE VERSION FINALE

ps professoral et administratif de la faculté de médecine et de pharmacie de Rabat. A l'agence Marocaine de coopération Internationale la Confédération de 



Corrigé TD Biologie appliquée Microbiologie Nutrition Alimentation

Un fruit et un produit laitier seraient plus appropriés. ? Exercice 3. 1. Citer les principaux constituants alimentaires de ce menu. Protéines glucides



46 exercices corriges échantillonnage et estimation s3 pdf

21 déc 2019 · Ce document de séries d'exercices pour toutes les parties du cours d'échantillonnage et estimation s3 avec corrigé détails de faculté FSJES 



TD echantillonnage et estimation s3 avec corrige pdf - FSJES Cours

18 oct 2018 · 46 exercices corriges échantillonnage et estimation s3 pdf · Cours d'echantillonnage et estimation echantillonnage · corrigé Echantillonnage 



TD et Exercices Corrigés Echantillonnage et Estimation S3 PDF

12 sept 2019 · echantillonnage et estimation s3 exercices corrigés maroc pdf Exercices Avec Solutions Echantillonnage et Estimation Semestre S3 Economie



Examens Corrigés Echantillonnage et Estimation S3 PDF

9 déc 2019 · Examens Echantillonnage et Estimation s3 avec corrigé Controles Corrigés Echantillonnage et Estimation S3 Economie Epreuves+QCM+Exercices Avec 



Echantillonnage et Estimation Exercices Corrigés PDF Gratuit

Télécharger gratuitement TD QCM Examens echantillonnage et estimation exercices corrigés PDF S3 Bachelor / Licence Economie et Gestion (2ème année L2)



Examen déchantillonnage et estimation s3 corrigé pdf

Exercice 1 Une entreprise fabrique des billes en verre Les masses en gramme d'un Echantillon prélevé au hasard sont : 1 Estimer la moyenne et l'écart 





échantillonnage(S3) fsjes 2 Séries corrigés

5 mar 2016 · échantillonnage(S3) fsjes 2 Séries corrigés exercice échantillonnage corrigé exercices corrigés echantillonnage et estimation pdf



Échantillonnage et Estimation - Auto Learning Center

Échantillonnage et Estimation Cours · Résumé · Examens/Exercices/TD contact Whatsapp 0-677-581-811 Facebook www facebook com/autolearningcenter



Révision échantillonnage et estimation : Exercices - YouTube

28 nov 2019 · S3 économie # échantillonnage # la fac Durée : 36:31Postée : 28 nov 2019

:

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

loi.normale.standard.inverse(1)Khi-Deux 2()K

2khideux(k;;1)

;1;2inverse.Loi.f(;1;2))

8CHAPITRE 1. LOIS STATISTIQUES

Chapitre2Convergences

2.1 Convergence en probabilité

2.1.1 Inégalités utiles

Inégalité de Markov simplifiée

SoitYune v.a.r.,gune fonction croissante et positive ou nulle sur l"ensemble des réels, vérifiantg(a)>0,

alors

8a >0;P(Ya)E(g(Y))g(a):

Preuve

E(g(Y)) =Z

g(y)f(y)dy=Z Y Yag(y)f(y)dy

Z

Yag(y)f(y)dycargest positive ou nulle

g(a)Z

Yaf(y)dycargest croissante

=g(a)P(Ya)

AinsiE(g(Y))g(a)P(Ya).

Rappel : Inégalité de Bienaymé-Chebyshev

SoitXune variable aléatoire admettant une espéranceE(X)et de variance finie2(l"hypothèse de variance finie garantit l"existence de l"espérance).

L"inégalité de Bienaymé-Chebychev s"énonce de la façon suivante : pour tout réel"strictement positif,

P(jXE(X)j ")2"

2: PreuveVoir Cours S3 ou prendreY=jXE(X)j,a="etg(t) =t2dans l"inégalité de Markov.

10CHAPITRE 2. CONVERGENCES2.1.2 Convergence en probabilité

Définition 4 (Convergence en probabilité)On considère une suite(Xn)d"une v.a. définie sur

Xune autre v.a. définie sur

On dit que la suite(Xn)converge en probabilité vers une constante réelle`si

8" >0;limn!1P(jXn`j> ") = 0:

On dit que la suite(Xn)converge en probabilité versXsi

8" >0;limn!1P(jXnXj> ") = 0:

Exemple de la loi binomiale :On réalisenexpériences indépendantes et on suppose que lors de

chacune de ces expériences, la probabilité d"un événement appelé "succès" estp. SoitSnle nombre de

succès obtenus lors de cesnexpériences. La variance aléatoireSn, somme denvariables de Bernoulli

indépendantes, de même paramètrep, suit une loi binomiale :Sn,! B(n;p). On s"intéresse alors à la variable aléatoire Snn , proportion de succès surnexpériences, a donc pour espéranceE(Snn ) =pet pour varianceV(Snn ) =1n

2V(Sn) =p(1p)n

. Commep(1p)atteint son maximum

lorsquep= 1=2, on a ainsip(1p)1=4. En appliquant l"inégalité de Bienaymé-Chebyshev, il vient

P(jSn=npj ")p(1p)n"

214n"2:

Ainsi pour tout" >0, il existe >0(plus précisément >14n"2) tel queP(jSn=npj ")< ou encorelimn!1P(jSn=npj ") = 0. La variable aléatoireSnn converge en probabilité versp.

Théorème 2.1.1Soit(Xn)une suite de variables aléatoires sur le même espace probabilisé(

;P)ad- mettant des espérances et des variances vérifiant lim n!1E(Xn) =`etlimn!1V(Xn) = 0; alors les(Xn)convergent en probabilité vers`. PreuveSoit" >0. PosonsE(Xn) =`+unaveclimun= 0. Alors il existeN2Ntel que : nN) junj< "=2 et donc à partir du rangN, jXnE(Xn)j< "=2) jXn`j< ";(2.1)quotesdbs_dbs35.pdfusesText_40
[PDF] echantillonnage et estimation s3 exercices corrigés pdf

[PDF] echantillonnage et estimation s4 exercices corrigés

[PDF] échantillonnage et estimation cours pdf

[PDF] echantillonnage et estimation cours s3

[PDF] échantillonnage terminale s physique

[PDF] cours echantillonnage et estimation terminale es

[PDF] inférence statistique exercices corrigés

[PDF] statistique inférentielle cours

[PDF] estimation statistique definition

[PDF] estimation statistique exercices corrigés

[PDF] cours estimation statistique

[PDF] exercices corrigés échantillonnage traitement de signal

[PDF] cours d'échantillonnage

[PDF] échantillonnage et quantification d'une image

[PDF] échantillonnage image numérique