[PDF] [PDF] Electrochim LA VITESSE DE LA REACTION





Previous PDF Next PDF



Courbes courant-potentiel

la caractéristique courant-tension de ce système on utilise un montage à trois électrodes. Dans ce montage



Cinétique électrochimique

Un montage dit « à 3 électrodes » permet le tracé expérimental de courbes intensité-potentiel. Son principe est abordé dans l'exercice 1 de la rubrique 



Electrochim Electrochimie

LA VITESSE DE LA REACTION ELECTROCHIMIQUE ET LA RELATION AVEC L'INTENSITE I. .......................... 5 ... MONTAGE EXPERIMENTAL A 3 ELECTRODES.



SCHÉMAS ÉLECTROCHIMIE

Nous allons reprendre le montage du 2.1.1 mais en y ajoutant une troisième électrode : Figure 2.3 – Dispositif expérimental à 3 électrodes.



Analyse du comportement électrochimique de matériaux d

29 nov. 2017 Comportement électrochimique d'aciers inoxydables biocompatibles en milieu ... à l'aide d'un montage particulier à 3 électrodes (Figure 6).



Acquisition de courbes intensité potentiel

Rappel du montage à trois électrodes : L' E.C.S. sert de référence des potentiels pour mesurer via le millivoltmètre



Réactions électrochimiques et courbes intensité – potentiel

I-3 Réactions d'électrodes On utilise généralement dans les montages des électrodes de référence ... III- 2 Vitesse d'une réaction électrochimique.



Diapositive 1

Le potentiel de l'électrode de mesure est relié à la concentration de l'espèce en solution par la loi de Nernst. Montage d'un dosage potentiométrique. Page 3 



TP Courbes intensité potentiel

l'électrode est une cathode. 2 – Montage à trois électrodes : Le but est de relever la courbe intensité – potentiel d'une réaction électrochimique relative 



Caractérisation électrochimique de matériaux délectrodes dun

24 mai 2012 un montage à 3 électrodes avec une contre électrode en Ni et une pseudo-référence en Ni. Des manipulations « contrôle » ont également été ...



[PDF] Cinétique électrochimique - IPEST

Un montage dit « à 3 électrodes » permet le tracé expérimental de courbes intensité-potentiel Son principe est abordé dans l'exercice 1 de la rubrique 



[PDF] Cinétique électrochimique - Frédéric Legrand

Montage à trois électrodes Ce montage permet d'étudier la cinétique des réactions électrochimiques sur une électrode V A U ER CE ET I I



[PDF] SCHÉMAS ÉLECTROCHIMIE

Nous allons reprendre le montage du 2 1 1 mais en y ajoutant une troisième électrode : Figure 2 3 – Dispositif expérimental à 3 électrodes



[PDF] Courbes courant-potentiel

Courbe courant-potentiel associée à un couple et à une électrode courant-tension de ce système on utilise un montage à trois électrodes



[PDF] Electrochim

LA VITESSE DE LA REACTION ELECTROCHIMIQUE ET LA RELATION AVEC L'INTENSITE I 5 MONTAGE EXPERIMENTAL A 3 ELECTRODES



[PDF] Filière sciences de la matière Cours délectrochimie SMC Semestre 5

CHAPITRE III : CINETIQUE ELECTROCHIMIQUE I Polarisation et surtension d'une électrode I 1 Définition : I 2 Différents types de courbe de polarisation



[PDF] Réactions électrochimiques et courbes intensité – potentiel

On utilise pour cela un montage à trois électrodes : électrode de travail (ET) électrode de référence (Eref) et électrode auxiliaire (CE) La différence est 



[PDF] Électrochimie Sommaire 1 Courbes intensité-potentiel (i = f(E))

1 1 Montage à trois électrodes Conversion d'énergie chimique en énergie électrique : la pile électrochimique 4 2 4 Protection électrochimique



[PDF] LC30 : Cinétique électrochimique

Du coup son potentiel ne sera plus celui de référence Pour remédier à ça on fait plutôt un montage à 3 électrodes En fait on rajoute une contre électrode 

:

Illustration de la couche de Nernst /

Cours de chimie de

llustration de la couche de Nernst / L"actualité chimique - janvier 2003

Cours de chimie de seconde année P

janvier 2003 seconde année PSI

) !30%#4 #).%4)15% $%3 2%!#4)/.3 %,%#42/#()-)15%3 ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

ΐȁ ,! 2%!#4)/. %,%#42/#()-)15% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

,! 6)4%33% $% ,! 2%!#4)/. %,%#42/#()-)15% %4 ,! 2%,!4)/. !6%# ,Ȍ).4%.3)4% )ȁ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Δ

!ȁ ,! 2%!#4)/. %45$)%% Δ "ȁ 2%,!4)/. %.42% ,! 6)4%33% 6 %4 ,Ȍ).4%.3)4% Ε #ȁ #/.6%.4)/. 0/52 ,Ȍ).4%.3)4% ) Ε

)) %45$% $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

ΐȁ -/.4!'% %80%2)-%.4!, ! Β %,%#42/$%3ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

"ȁ 3934%-% 2!0)$% ΐΐ #ȁ 3934%-% ,%.4 ΐΑ $ȁ ./4)/. $% 3524%.3)/. %,%#42/#()-)15% ΐΒ %ȁ #/-0/24%-%.4 $)&&%2%.4 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% ΐΖ &ȁ 0!,)%2 $% $)&&53)/. ΐΗ !ȁ !$$)4)6)4% $%3 ).4%.3)4%3 Αΐ "ȁ 02%6)3)/.3 $%3 2%!#4)/.3 ΑΑ

))) %45$% $% ,Ȍ%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

ΐȁ #/.$)4)/. $͒%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

15%,,%3 %30%#%3 3/.4 %,%#42/,93%%3 Ȉ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΗ

Situation du chapitre dans le programme :

Dans la première partie, nous étudions l"allure générale des courbes i-E en distinguant les systèmes dits rapides et les systèmes dits lents. Dans une seconde

partie, les résultats généraux énoncés lors de l"étude des courbes i-E seront appliqués à

l"électrolyse. n e-

ELECTRODE

transfert de charge

électrode

Ox adsorbé

Red adsorbé

Ox désorbé

Red désorbéOx solution

Red solution

REGION PROCHE DE LA

SURFACE DE L"ELECTRODESOLUTION

transfert de matière"double couche" solution

Ox solution

Red solution

SOLUTION

solution e- e- Ox Ox Red réduction

électrode

solution

3®¨³ Ȁ ¨ ώ ȃ ȁ&ȁ£

Ox Red oxydation

Réduction

ȁ&ȁ£xxxxȝ£³ ώ ȃ ȁ&ȁµ

Réduction

Ȁ ¨ ώ £1ȝ£³

Par convention :

Le courant est toujours compté

ELECTRODE ¾¾® SOLUTION

e-e- Ox Red oxydation i > 0 compté positivement dans le sens :

SOLUTION

Ox Red oxydation

Si l"électrode est siège d"une

OXYDATION :

l"électrode fonctionne en dire si elle est le siège d"une les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le sens solution ¾¾® l"intensité correspondant à transfert est positive

Ainsi pour une

oxydation à l"anode : ia > 0

Si l"électrode est siège d"une

REDUCTION :

l"électrode fonctionne en

à-dire si elle est le siège d"une

réduction, des électrons passent de l"électrode vers l"espèce en solution

Ox1 ; la charge dq traversant l"interface

Si l"électrode est siège d"une

l"électrode fonctionne en anode, c"est-à- dire si elle est le siège d"une oxydation, les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le

¾¾® électrode et

l"intensité correspondant à ce transfert est positive. oxydation à l"anode :

Si l"électrode est siège d"une

l"électrode fonctionne en cathode, c"est- dire si elle est le siège d"une , des électrons passent de l"espèce en solution ; la charge dq traversant l"interface e-e- Ox Red réduction Ox Red réduction i < 0 dans le sens électrode ¾¾® solution est négative et l"intensité correspondant à ce transfert est négative : i c < 0.

REM : i = - n.F.dx/dt = - n.F.[dx/dt)

Red - dx/dt)Ox] = - n.F.[vRed - vOx] = - n.F.vRed + n.F. vOx i = - n.F.vRed + n.F. vOx = ic + ia avec : ic = - n.F.vRed < 0 et ia = + n.F. vOx > 0 #/.34!43 Ȁ oxydation de Red réduction de Ox oxydation de Red réduction de Ox

0 ± £Î¥¨¨³¨®Ǿ "

Ox

RedRedOx

ia i / mA

Eéq

hhhhasurtension faible fort courant branche anodique branche cathodique

3¨¦¨¥¨¢ ³¨® Ȁ

E / V surtension faible fort courant branche anodique i / mA hhhh Red Red Ox branche cathodique iC

Eéq

hhhhca ia surtension fortefort courant OxRed branche anodique E / V fort courant d"oxydation fort courant de réduction hhhhchhhhaVa Vc

0®´± ´

$)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% hhhha branches cathodiquesbranche anodique

O2(g)H2O

H2(g)H+

HgFePt

pH = 0

E par rapport à l"ECS

Pt hhhhchhhhc iDc branche anodique i / mA

Eéq

Fe2+Fe3+

Fe2+Fe3+

branche cathodique iDa = kDFe2+.Fe2+ sol iDc = kDFe3+.Fe3+ sol ),,5342!4)/. Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche cathodique i / mA iDc Ag(s) branche anodique

Eéq

AgAg(s)

Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 Ag+ branche anodique Ag+ Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche anodique d"une espèce oxydable soluble ia,l branche cathdique d"une espèce réductrice soluble ic,l %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce branche anodique d"une espèce oxydable insoluble branche cathdique d"une espèce branche cathodique d"une espèce réductrice insoluble %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce oxydable insoluble branche cathodique d"une espèce réductrice insoluble

H2(g)H+

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.%

E2E1 OH2O

Limites du domaine

d"électroactivité dans l"eau compris entre E

1 et E2

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.% %,%#42/$%

O2(g) %,%#42/$% Red1 i / mA i / mA Red1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, $% $%58 #/50,%3 2%$/8

Ox2Red2

Ox1

Ox1Red1

Ox2Red2

E / V i / mA

Red1Ox1

Red2Ox2

E / V ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3

0/4%.4)%, $% $%58 #/50,%3 2%$/8

i1+ i2 i2 i1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 Red2

Ox1Red1

E1E2 ia2 i c1 = - ia2 Ox2 ia2 i c1 = - ia2

Red2Ox2

Ox1Red1

E1 E2 i / mA ia2 = 0 i c1 = - ia2 = 0

Ox1Red1

Red2Ox2

E2 E1 i / mA E1E2 ia2 i c1 = - ia2 i / mA

Red2Ox2

Ox1Red1

Ox1Red1

Ox2Red2

DDDDE Red2 Ox1E2 E1 E

Red1Ox2

Red2Ox2

e- E1E2

Ox1Red1

Red2 Ox1E2 E1 E

Red1Ox2

/± £'4Ǿ0 ώ ȃ !ȁ£xxxx ώ DDDD±'ȁ£xxxx i D±' ώ Α Ȭȃ ΐ ȁ & ȁ %ΐȭ ȃ ΐ Ȭȃ Α ȁ & ȁ %Αȭ DDDD±' ώ Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩ ȬΑȭ

Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ £° ???? Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ ΐȁΑȁ&ȁ£xxxx

5!# ϔ %Α ȟ %ΐ

3®¨³ Ȁ

6! ȟ 6# ϔ %Α ȟ %ΐ

VC UACquotesdbs_dbs15.pdfusesText_21
[PDF] comment tracer une courbe courant potentiel

[PDF] montage ? trois électrodes

[PDF] comment tracer courbe intensité potentiel

[PDF] exercice courbe intensité-potentiel

[PDF] tracé des courbes ie de fe2+/fe3+

[PDF] courbe intensité potentiel exercices corrigés

[PDF] eeg interpretation

[PDF] eeg interpretation pdf

[PDF] compte rendu eeg

[PDF] comment lire un eeg

[PDF] eeg pathologique

[PDF] tracé eeg normal

[PDF] eeg pointe onde

[PDF] eeg cours

[PDF] anomalie eeg