[PDF] Electrochim Electrochimie Le dispositif mis en œuvre





Previous PDF Next PDF



Diapositive 1

versée le couple redox Fe3+/Fe2+ s'établit : Coté lecture : E lu. = E. Fe3+/Fe2+ doser du cadmium



Electrochim Electrochimie

Le dispositif mis en œuvre pour tracer des courbes intensité-potentiel est un montage Ex : couple Fe3+ / Fe2+ sur une électrode de.



TP Courbes intensité potentiel

Objectifs : - Tracer expérimentalement des courbes intensité-potentiel à l'aide d'un 3 – Mode opératoire : couple Fe3+/Fe2+ sur électrode de platine :.



TP DE CHIMIE N°13 : Courbes courant-potentiel Eléments de

avec une électrode de travail en platine. Dans le bécher au fur et à mesure du tracé des courbes i-E (balayage de -15 V à 2



TP Courbes intensité - potentiel

Mettre en œuvre un dispositif à trois électrodes pour tracer des courbes courant-potentiel. 2 Tracé de la courbe i = f(E) du couple Fe3+/Fe2+.



TP C1 :

potentiel standard du couple Fe3+/Fe2+ est de +068 V en milieu sulfurique une ordonnée maximale lors de notre tracé de courbe intensité potentiel ?



Réactions électrochimiques et courbes intensité – potentiel

E = E°Ag+/Ag +0.06log (Ks) - 0.06log ([Cl-]) ?= E- Ea >0 provoque l'oxydation Fe2+. Fe3+. - la courbe (b) est tracée à partir d'une solution ne ...



Exercices Cinétique électrochimique – Courbes intensité-potentiel

Fe2+ Fe. ?. Pb2+ Pb. ?. Cu2+ Cu. ?. Fe3+ Fe2+ Tracer l'allure de la courbe intensité-potentiel pour une électrode de platine plongeant dans une solution.



Obtention dun métal par hydrométallurgie 2 : Courbes intensité

Fe3+/Fe2+ : 077 V Tracé manuel de courbes i-E ... Tracer l'allure de la courbe i-E pour une électrode de platine plongeant dans une solution aqueuse.



Untitled

présentes on peut étudier la réaction d'électrode Fe3+ + e. Fe2+. Tracer la courbe intensité potentiel obtenue dans les conditions d'un transfert de masse 



[PDF] Electrochim

Le dispositif mis en œuvre pour tracer des courbes intensité-potentiel est un montage Ex : couple Fe3+ / Fe2+ sur une électrode de



[PDF] Courbes intensité-potentiel - Chimie PCSI

Fe3+/Fe2+ : 077 V Br2/Br- : 108 NO3 -/NO(g) : 095 Explication de transformations redox par le tracé de courbes i-E 1 Tracer l'allure des courbes 



[PDF] TP DE CHIMIE N°13 : Courbes courant-potentiel Eléments de

Dans le bécher au fur et à mesure du tracé des courbes i-E (balayage de -15 V à 25V) : formation de bulles à la surface de l'électrode de travail et de la 



[PDF] Courbes intensité-potentiel - oxydo-réduction - AlloSchool

D'après la loi de Nernst : E = E? + 006 log ([Fe3+] [Fe2+] On se propose de tracer la courbe intensité-potentiel cathodique pour une élec-



[PDF] TP Courbes intensité potentiel

Objectifs : - Tracer expérimentalement des courbes intensité-potentiel à l'aide d'un montage informatisé - Constater certaines propriétés de ces courbes 



[PDF] Réactions électrochimiques et courbes intensité – potentiel

?= E- Ea >0 provoque l'oxydation Fe2+ Fe3+ - la courbe (b) est tracée à partir d'une solution ne contenant quasiment que des ions Fe3+ (oxydant seul)



[PDF] Exercices Cinétique électrochimique – Courbes intensité-potentiel

Tracer l'allure de la courbe intensité-potentiel dans les deux cas présentés ci-après • une électrode de platine plongeant dans un mélange tel que [Fe2+] 



[PDF] Courbes intensité-potentiel Niveau I

Les courbes intensité-potentiel tracées à pH = 7 des diverses espèces intervenant sont l'oxyde magnétique Fe3O4(s) la goethite FeOOH Fe2+ et Fe3+



[PDF] TRAVAUX PRATIQUES : ÉLECTROLYSE ET COURBES I-E

Courbe de polarisation pour le couple Fe3+/Fe2+ sur électrode de platine Écrire toutes les espèces réductibles et oxydables présentes et leur potentiel de 



[PDF] methodes electrochimiques - Faculté de Médecine

Courbes intensité-potentiel lors du dosage d'une solution d'ions cériques par les ions ferreux (Ce4+ + Fe2+ Ce3+ + Fe3+ ) Courbes intensité-potentiel 

:

Illustration de la couche de Nernst /

Cours de chimie de

llustration de la couche de Nernst / L"actualité chimique - janvier 2003

Cours de chimie de seconde année P

janvier 2003 seconde année PSI

) !30%#4 #).%4)15% $%3 2%!#4)/.3 %,%#42/#()-)15%3 ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

ΐȁ ,! 2%!#4)/. %,%#42/#()-)15% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

,! 6)4%33% $% ,! 2%!#4)/. %,%#42/#()-)15% %4 ,! 2%,!4)/. !6%# ,Ȍ).4%.3)4% )ȁ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Δ

!ȁ ,! 2%!#4)/. %45$)%% Δ "ȁ 2%,!4)/. %.42% ,! 6)4%33% 6 %4 ,Ȍ).4%.3)4% Ε #ȁ #/.6%.4)/. 0/52 ,Ȍ).4%.3)4% ) Ε

)) %45$% $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

ΐȁ -/.4!'% %80%2)-%.4!, ! Β %,%#42/$%3ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

"ȁ 3934%-% 2!0)$% ΐΐ #ȁ 3934%-% ,%.4 ΐΑ $ȁ ./4)/. $% 3524%.3)/. %,%#42/#()-)15% ΐΒ %ȁ #/-0/24%-%.4 $)&&%2%.4 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% ΐΖ &ȁ 0!,)%2 $% $)&&53)/. ΐΗ !ȁ !$$)4)6)4% $%3 ).4%.3)4%3 Αΐ "ȁ 02%6)3)/.3 $%3 2%!#4)/.3 ΑΑ

))) %45$% $% ,Ȍ%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

ΐȁ #/.$)4)/. $͒%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

15%,,%3 %30%#%3 3/.4 %,%#42/,93%%3 Ȉ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΗ

Situation du chapitre dans le programme :

Dans la première partie, nous étudions l"allure générale des courbes i-E en distinguant les systèmes dits rapides et les systèmes dits lents. Dans une seconde

partie, les résultats généraux énoncés lors de l"étude des courbes i-E seront appliqués à

l"électrolyse. n e-

ELECTRODE

transfert de charge

électrode

Ox adsorbé

Red adsorbé

Ox désorbé

Red désorbéOx solution

Red solution

REGION PROCHE DE LA

SURFACE DE L"ELECTRODESOLUTION

transfert de matière"double couche" solution

Ox solution

Red solution

SOLUTION

solution e- e- Ox Ox Red réduction

électrode

solution

3®¨³ Ȁ ¨ ώ ȃ ȁ&ȁ£

Ox Red oxydation

Réduction

ȁ&ȁ£xxxxȝ£³ ώ ȃ ȁ&ȁµ

Réduction

Ȁ ¨ ώ £1ȝ£³

Par convention :

Le courant est toujours compté

ELECTRODE ¾¾® SOLUTION

e-e- Ox Red oxydation i > 0 compté positivement dans le sens :

SOLUTION

Ox Red oxydation

Si l"électrode est siège d"une

OXYDATION :

l"électrode fonctionne en dire si elle est le siège d"une les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le sens solution ¾¾® l"intensité correspondant à transfert est positive

Ainsi pour une

oxydation à l"anode : ia > 0

Si l"électrode est siège d"une

REDUCTION :

l"électrode fonctionne en

à-dire si elle est le siège d"une

réduction, des électrons passent de l"électrode vers l"espèce en solution

Ox1 ; la charge dq traversant l"interface

Si l"électrode est siège d"une

l"électrode fonctionne en anode, c"est-à- dire si elle est le siège d"une oxydation, les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le

¾¾® électrode et

l"intensité correspondant à ce transfert est positive. oxydation à l"anode :

Si l"électrode est siège d"une

l"électrode fonctionne en cathode, c"est- dire si elle est le siège d"une , des électrons passent de l"espèce en solution ; la charge dq traversant l"interface e-e- Ox Red réduction Ox Red réduction i < 0 dans le sens électrode ¾¾® solution est négative et l"intensité correspondant à ce transfert est négative : i c < 0.

REM : i = - n.F.dx/dt = - n.F.[dx/dt)

Red - dx/dt)Ox] = - n.F.[vRed - vOx] = - n.F.vRed + n.F. vOx i = - n.F.vRed + n.F. vOx = ic + ia avec : ic = - n.F.vRed < 0 et ia = + n.F. vOx > 0 #/.34!43 Ȁ oxydation de Red réduction de Ox oxydation de Red réduction de Ox

0 ± £Î¥¨¨³¨®Ǿ "

Ox

RedRedOx

ia i / mA

Eéq

hhhhasurtension faible fort courant branche anodique branche cathodique

3¨¦¨¥¨¢ ³¨® Ȁ

E / V surtension faible fort courant branche anodique i / mA hhhh Red Red Ox branche cathodique iC

Eéq

hhhhca ia surtension fortefort courant OxRed branche anodique E / V fort courant d"oxydation fort courant de réduction hhhhchhhhaVa Vc

0®´± ´

$)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% hhhha branches cathodiquesbranche anodique

O2(g)H2O

H2(g)H+

HgFePt

pH = 0

E par rapport à l"ECS

Pt hhhhchhhhc iDc branche anodique i / mA

Eéq

Fe2+Fe3+

Fe2+Fe3+

branche cathodique iDa = kDFe2+.Fe2+ sol iDc = kDFe3+.Fe3+ sol ),,5342!4)/. Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche cathodique i / mA iDc Ag(s) branche anodique

Eéq

AgAg(s)

Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 Ag+ branche anodique Ag+ Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche anodique d"une espèce oxydable soluble ia,l branche cathdique d"une espèce réductrice soluble ic,l %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce branche anodique d"une espèce oxydable insoluble branche cathdique d"une espèce branche cathodique d"une espèce réductrice insoluble %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce oxydable insoluble branche cathodique d"une espèce réductrice insoluble

H2(g)H+

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.%

E2E1 OH2O

Limites du domaine

d"électroactivité dans l"eau compris entre E

1 et E2

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.% %,%#42/$%

O2(g) %,%#42/$% Red1 i / mA i / mA Red1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, $% $%58 #/50,%3 2%$/8

Ox2Red2

Ox1

Ox1Red1

Ox2Red2

E / V i / mA

Red1Ox1

Red2Ox2

E / V ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3

0/4%.4)%, $% $%58 #/50,%3 2%$/8

i1+ i2 i2 i1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 Red2

Ox1Red1

E1E2 ia2 i c1 = - ia2 Ox2 ia2 i c1 = - ia2

Red2Ox2

Ox1Red1

E1 E2 i / mA ia2 = 0 i c1 = - ia2 = 0

Ox1Red1

Red2Ox2

E2 E1 i / mA E1E2 ia2 i c1 = - ia2 i / mA

Red2Ox2

Ox1Red1

Ox1Red1

Ox2Red2

DDDDE Red2 Ox1E2 E1 E

Red1Ox2

Red2Ox2

e- E1E2

Ox1Red1

Red2 Ox1E2 E1 E

Red1Ox2

/± £'4Ǿ0 ώ ȃ !ȁ£xxxx ώ DDDD±'ȁ£xxxx i D±' ώ Α Ȭȃ ΐ ȁ & ȁ %ΐȭ ȃ ΐ Ȭȃ Α ȁ & ȁ %Αȭ DDDD±' ώ Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩ ȬΑȭ

Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ £° ???? Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ ΐȁΑȁ&ȁ£xxxx

5!# ϔ %Α ȟ %ΐ

3®¨³ Ȁ

6! ȟ 6# ϔ %Α ȟ %ΐ

VC UAC VA Ox2Re ReOx1 E VC UAC VA Red Ox1 E

Ox"1Re

d VC CUAC VAed2 ed1 E2

E1Ox2Red2Red1Ox1

E VC CUAC

VAd2E2

E1Red2

Ox1 E d"2Red"2 Ox"1

Ǿ ¨" ¸ /89$!4)/.

E2 E1 E2 E1

6! ȃ 6# ώ 5!#

02)3% %. #/-04% $%3

#).%4)15% 0/52 ,Ȍ%,%#42/,93%ȁ Red i

02)3% %. #/-04% $%3 3524%.3)/.3 Ȁ 02)3% %. #/-04% $%

#42/,93%ȁ

Red2 Ox2

Ox1 d1 E2E1 UAC

Ȁ 02)3% %. #/-04% $% ,Ȍ!30%#4

E

Red2Ox2

Ox1 Red1 E2E1 UAC Ei hhhhahhhhc 5 !# ώ Ȩ%Α ȟ %ΐȩ χ Ȩh ȟ h¢ȩ

5!# ώ Ȩ%Α ȟ %ΐȩ χ Ȩh ȟ h¢ȩ χ 2ȁ)

quotesdbs_dbs35.pdfusesText_40
[PDF] courbe intensité potentiel exercices corrigés

[PDF] eeg interpretation

[PDF] eeg interpretation pdf

[PDF] compte rendu eeg

[PDF] comment lire un eeg

[PDF] eeg pathologique

[PDF] tracé eeg normal

[PDF] eeg pointe onde

[PDF] eeg cours

[PDF] anomalie eeg

[PDF] corrosion galvanique aluminium cuivre

[PDF] corrosion galvanique aluminium acier

[PDF] corrosion galvanique aluminium laiton

[PDF] protection de l'aluminium par anodisation correction

[PDF] compatibilité zinc aluminium