[PDF] Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat





Previous PDF Next PDF



Méthodes et Exercices de Mathématiques PCSI-PTSI

2 févr. 2012 MATHÉMATIQUES. PCSI-PTSI. Les méthodes à retenir. Plus de 500 énoncés d'exercices. Indications pour bien démarrer. Corrigés détaillés.



EXERCICES PROBLEMES PHYSIQUE MPSI PCSI PTSI

– Lorsqu'un exercice peut être résolu par plusieurs méthodes intéressantes ces méthodes sont présentées et développées. – Pour certains exercices nous mettons 



Mathématiques Méthodes et Exercices PC-PSI-PT

primitives volume Exercices PCSI-PTSI. ? Exercices 2.25



Exercices problèmes physique MPSI PCSI PTSI

– Lorsqu'un exercice peut être résolu par plusieurs méthodes intéressantes ces méthodes sont présentées et développées. – Pour certains exercices nous mettons 



Planche dexercices Colles de mathématiques en BCPST1

5 avr. 2019 les livres Cours de mathématiques Sup MPSI PCSI PTSI TSI de Alain Soyeur



Data - Jean-Marie Monier

Œuvres textuelles (49). Maths PCSI-PTSI méthodes et exercices Maths PC-PSI-PT



Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat

23 mars 2011 Deux méthodes de calcul de la distance d'un point à un plan . ... verrez qu'ils sont omniprésents dans le cours de mathématiques durant vos.



livre de grec ancien de seconde ainsi que celui de première. le

-Mathématiques : exercices incontournables (MPSI PCSI



Électromagnétisme MPSI

Électrocinétique / MPSI. Optique / MPSI-PCSI-PTSI. Thermodynamique / MPSI. Mathématiques / MPSI. Physique / MPSI. Chimie 1" année. Chimie / MPSI. Exercices 



Réussir son entrée en Prépas scientifiques Maths

Des exercices corrigés pour s'entra?ˆner. • Des problèmes pour aller plus loin. MATHS. Tle S prépas scientifiques. MPSI • PCSI • PTSI • BCPST. Paul Milan.



Méthodes et Exercices de Mathématiques PCSI-PTSI

LES MÉTHODES ET EXERCICES DE MATHÉMATIQUES PCSI-PTSI Les méthodes à retenir Plus de 500 énoncés d’exercices Indications pour bien démarrer Corrigés détaillés Jean-Marie Monier



Méthodes et Exercices de Mathématiques PCSI-PTSI

ou faire intervenir la notion de quantité conjuguée Exercice 1 2 Essayer de faire intervenir la somme et le produit de x et y en notant S = x + y et P = xy et en considérant S et P comme les nouvelles inconnues Exercice 1 5 Voir aussi chapitre 17 • Effectuer un changement de variable pouvant ramener l’inégalité

Quels sont les objectifs d’un cours en PTSI ?

Les cours en PTSI sont organisés en deux semestres, où les chapitres étudiés ont des objectifs différents. Le premier semestre permet aux élèves de revoir les bases fondamentales du programme de terminale, de les consolider, les approfondir et de prendre le temps de s’adapter à la rigueur attendue.

Comment fonctionne le programme de mathématiques de PTSI?

Le programme de mathématiques de PTSI s’inscrit entre deux continuités : en amont avec les programmes rénovés du lycée, en aval avec les enseignements dispensés dans les grandes écoles, et plus généralement les poursuites d’études universitaires.

Qu'est-ce que la mécanique en PTSI?

En mécanique en PTSI, les cours poursuivent ce qui a été vu pendant les cours de terminale (loi fondamentale de la dynamique et quantité de matière). L’étude de la transformation de la matière en PTSI est majoritairement chimique.

Qu'est-ce que la PTSI?

La CPGE (classe préparatoire aux grandes écoles) PTSI est destinée aux bacheliers S, toutes spécialités. Ceux qui ont suivi l'enseignement SVT (sciences de la vie et de la Terre) au lycée bénéficient d'un enseignement supplémentaire en sciences industrielles de l'ingénieur de 2 heures par semaine.

Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat

Cours de Mathématiques

Sup MPSI PCSI PTSI TSI

En partenariat avec l'association Sésamath http://www.sesamath.net et le site http://www.les-mathematiques.net

Document en cours de relecture

Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron

23 mars 2011

Table des matières1 Nombres complexes19

1.1 Le corpsCdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 20

1.1.2 Construction deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Propriétés des opérations surC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Partie réelle, partie imaginaire d'un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

1.3 Représentation géométrique des complexes . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Représentation d'Argand . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 23

1.3.2 Interprétation géométrique de quelques opérations .. . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Module d'un nombre complexe, inégalités triangulaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 GroupeUdes nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 26

1.6 Argument, fonction exponentielle complexe . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.1 Argument d'un nombre complexe . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 31

1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 32

1.7 Racinesn-ièmes de l'unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 33

1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 35

1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 35

1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 36

1.9 Nombres complexes et géométrie plane . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 37

1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 37

1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 37

1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 38

1.10 Transformations remarquables du plan . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 38

1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 38

1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 39

1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 42

1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 42

1.11.2 Polynômes, équations, racines de l'unité . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 43

1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 49

1.11.4 Application des nombres complexes à la géométrie . . .. . . . . . . . . . . . . . . . . . . . . . . . 53

1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 60

2 Géométrie élémentaire du plan62

2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 63

2.1.2 Produit d'un vecteur et d'un réel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 63

2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 64

2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 64

2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 64

2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 64

2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 67

2

Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 68

2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 69

Équation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 70

2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 70

2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 70

2.3.2 Interprétation en terme de projection . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 70

2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 71

2.3.4 Interprétation en termes de nombres complexes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 72

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 72

2.4.2 Interprétation en terme d'aire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 73

2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 73

2.4.4 Interprétation en terme de nombres complexes . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 74

2.4.5 Applicationdudéterminant: résolutiond'unsystèmelinéairede Cramer dedeuxéquationsà deux

inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 74

2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 75

2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 75

2.5.2 Lignes de niveau deMu.AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.3 Lignes de niveau deMdet

u,AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.4 Représentation paramétrique d'une droite . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 76

2.5.5 Équation cartésienne d'une droite . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 77

2.5.6 Droite définie par deux points distincts . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.7 Droite définie par un point et un vecteur normal . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.8 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 78

2.5.9 Équation normale d'une droite . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 79

2.5.10 Équation polaire d'une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 80

2.5.11 Intersection de deux droites, droites parallèles . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 81

2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 81

2.6.2 Équation cartésienne d'un cercle . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 81

2.6.3 Représentation paramétrique d'un cercle . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 82

2.6.4 Équation polaire d'un cercle passant par l'origine d'un repère . . . . . . . . . . . . . . . . . . . . . 83

2.6.5 Caractérisation d'un cercle par l'équationMA.MB0. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.6 Intersection d'un cercle et d'une droite . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 84

2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 87

2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 87

2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 88

2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 95

2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 99

2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 109

2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 111

3 Géométrie élémentaire de l'espace113

3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 113

3.1.1 Combinaisons linéaires de vecteurs, droites et plansdans l'espace . . . . . . . . . . . . . . . . . . 113

3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 114

3.1.3 Orientation de l'espace, base orthonormale directe .. . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Mode de repérage dans l'espace . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 116

3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 116

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 116

Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 116

Norme d'un vecteur, distance entre deux points dans un repère orthonormé . . . . . . . . . . . . . 117

3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 118

3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 119

3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 119

3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 121

3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 121

3.4.2 Interprétation géométrique du produit vectoriel . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 122

3

3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 122

Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 122

Quelques exemples d'applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 123

3.4.4 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 124

3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 124

3.5.2 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 124

3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 125

3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 126

3.6 Plans dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 127

3.6.1 Représentation paramétrique des plans . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 127

3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 127

Interprétation géométrique de l'équation normale . . . . . . .. . . . . . . . . . . . . . . . . . . . . 128

Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 129

3.6.3 Distance d'un point à un plan . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 129

Deux méthodes de calcul de la distance d'un point à un plan . . .. . . . . . . . . . . . . . . . . . 130

3.7 Droites dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.3 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 132

3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 132

3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 135

3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 135

3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 136

3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 136

3.9.2 Coordonnées cartésiennes dans l'espace . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 138

3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 147

4 Fonctions usuelles151

4.1 Fonctions logarithmes, exponentielles et puissances .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 152

4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 154

4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 156

4.1.4 Exponentielle de basea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 158

4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 159

4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.1 Rappels succincts sur les fonctions trigonométriques . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 162

4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 163

4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 165

4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 166

Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 168

4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 169

4.3.3 Fonctions hyperboliquesinverses . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 169

Fonction argument sinus hyperboliqueargsh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Fonction Argument cosinus hyperboliqueargch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Fonction Argument tangente hyperboliqueargth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 173

4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 176

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 178

4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 184

4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 193

4

5 Equations différentielles linéaires198

5.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 198

5.2 Deux caractérisations de la fonction exponentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Caractérisation par une équation différentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.2 Caractérisation par une équation fonctionnelle . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Équation différentielle linéaire du premier ordre . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 199

5.3.2 Résolution de l'équation différentielle homogène normalisée . . . . . . . . . . . . . . . . . . . . . 200

5.3.3 Résolution de l'équation différentielle normaliséeavec second membre . . . . . . . . . . . . . . . 202

5.3.4 Détermination de solutions particulières . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 203

Superposition des solutions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 203

Trois cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 203

Méthode de variation de la constante . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 205

5.3.5 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 206

5.3.6 Méthode d'Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4 Équations différentielles linéaires du second ordre . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.4.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4.2 Résolution de l'équation différentielle homogène dusecond ordre dansC. . . . . . . . . . . . . . 210

5.4.3 Résolution de l'équation différentielle homogène dusecond ordre dansR. . . . . . . . . . . . . . 212

5.4.4 Équation différentielle du second ordre avec second membre . . . . . . . . . . . . . . . . . . . . . 213

5.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 217

5.5.1 Équations différentielles linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.5.2 Équations différentielles linéaires du second ordreà coefficients constants . . . . . . . . . . . . . . 221

5.5.3 Résolution par changement de fonction inconnue . . . . .. . . . . . . . . . . . . . . . . . . . . . . 222

5.5.4 Résolution d'équations différentielles par changement de variable . . . . . . . . . . . . . . . . . . 224

5.5.5 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 225

5.5.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 227

6 Étude des courbes planes230

6.1 Fonctions à valeurs dansR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 230

6.1.2 Dérivation du produit scalaire et du déterminant . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 232

6.2 Arcs paramétrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 233

6.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 233

6.2.2 Étude locale d'un arc paramétrée . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 233

Étude d'un point stationnaire avec des outils de terminale,première période . . . . . . . . . . . . 234

Étude d'un point stationnaire avec les développements limités, seconde période . . . . . . . . . . 234

Branches infinies des courbes paramétrées . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 237

6.2.3 Étude complète et tracé d'une courbe paramétrée . . . . .. . . . . . . . . . . . . . . . . . . . . . . 240

6.3 Etude d'une courbe polairef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 244

6.3.2 Etude d'une courbef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.3.3 La cardioïde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 246

6.3.4 La strophoïde droite . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 247

6.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 248

6.4.1 Fonctions vectorielles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 248

6.4.2 Courbes en coordonnées cartésiennes . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 248

6.4.3 Courbes polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 263

7 Coniques271

7.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 272

7.1.1 Définition monofocale . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 272

7.1.2 Équation cartésienne d'une conique . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 272

7.1.3 Équation polaire d'une conique . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 273

7.2 Étude de la parabole :e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.3 Étude de l'ellipse :0e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

7.4 Étude de l'hyperbole :1e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7.5 Définition bifocale de l'ellipse et de l'hyperbole . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.6 Courbes algébriques dans le plan . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 282

7.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 286

5

7.7.1 En général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 286

7.7.2 Paraboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 286

7.7.3 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 288

7.7.4 Hyperboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 291

7.7.5 Coniques et coordonnées polaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 294

7.7.6 Courbes du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 295

8 Nombres entiers naturels, ensembles finis, dénombrements304

8.1 Ensemble des entiers naturels - Récurrence . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 304

8.1.1 Ensemble des entiers naturels . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 304

8.1.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 305

8.1.3 Suite définie par récurrence . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 306

8.1.4 Notationset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.1.5 Suites arithmétiques et géométriques . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 307

8.2 Ensembles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 308

8.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 308

8.2.2 Propriétés des cardinaux . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 308

8.2.3 Applications entre ensembles finis . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 310

8.3 Opérations sur les ensembles finis . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 310

8.4 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 312

8.4.1 Nombre dep-listes d'un ensemble fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 312

8.4.2 Nombre d'applications d'un ensemble fini dans un ensemble fini . . . . . . . . . . . . . . . . . . . 312

8.4.3 Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 313

8.4.4 Combinaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 313

8.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 318

8.5.1 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 318

8.5.2 Sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 323

8.5.3 Produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 325

8.5.4 Factorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 326

8.5.5 Coefficients binomiaux, calculs de somme . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 326

8.5.6 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 332

9 CorpsRdes nombres réels339

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 339

9.2 Le corps des réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 340

9.3 Valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 341

9.4 Majorant, minorant, borne supérieure . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 342

9.5 Droite numérique achevée

R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343quotesdbs_dbs30.pdfusesText_36
[PDF] quels sont les pays du golfe de guinee

[PDF] enjeux stratégiques golfe guinée

[PDF] jean marie monier analyse mpsi pdf gratuit

[PDF] algebre mpsi monier pdf gratuit

[PDF] golfe de guinée pétrole

[PDF] exemple de conversation avec une fille pdf

[PDF] prix esta usa 2016

[PDF] esta prix officiel

[PDF] prix visa usa touriste

[PDF] prix esta 2017

[PDF] esta 14$

[PDF] prix esta new york

[PDF] esta formulaire us

[PDF] cours de chimie de formulation pdf

[PDF] cours de formulation cosmétique