[PDF] Circuit Analysis Using Fourier and Laplace Transforms - EE2015





Previous PDF Next PDF



Circuit Analysis Using Fourier and Laplace Transforms - EE2015

Circuit analysis using the Fourier transform. For an input exp(j?t) Applicability of Laplace transforms to circuit analysis. Circuits with lumped R



Applications of Fourier Transform in Engineering Field

We use Fourier Transform in signal &image processing. It is also useful in cell phones. LTI system & circuit analysis. KEYWORDS:Fourier Transform



Application of Fourier Transforms to Variable-Frequency Circuit

Summary-Fourier transforms are veryvaluable for the analysis of the behavior of passive circuits when the driving force is frequency modulated.



EE 261 – The Fourier Transform and its Applications

Other directions combine tools from Fourier analysis with symmetries of the on an electrical circuit) and the waves (or the electrical current) wash ...



Application and Simulation of Fourier Analysis in Communication

transform and the system function; then the relevant applications of Fourier theory in communication circuits are introduced



Community

Answer to Application of Laplace transform to electric circuits For the Of Laplace Transform in Circuit Analysis By Dr YM Dubey AKTU Digital Education ...



Chapter 17 Fourier Transform

systems apply the principles of circuit analysis. A com- Next we apply the Fourier transform in analyzing circuits. We ... 17.4 CIRCUIT APPLICATIONS.



Circuit Analysis by Laplace and Fourier Transforms

Classical and Heaviside Method of Solution. Laplace Transform Method. Transition from Laplace to Fourier Transforms. Development of Fourier Integral from 



The RC Circuit: An Approach with Fourier Transforms In this article

equations that come up in network analysis. The use of FT comes smoothly from first principles – precisely what we set out to demonstrate here. We start with 



Chapter 13 The Laplace Transform in Circuit Analysis

13.1. Circuit Elements in the s Domain. 13.2-3 Circuit Analysis in the s Domain. 13.4-5 The Transfer Function and Natural Response.

Circuit Analysis Using Fourier and Laplace Transforms

EE2015: Electrical Circuits and Networks

Nagendra Krishnapura

https://www.ee.iitm.ac.in/nagendra/

Department of Electrical Engineering

Indian Institute of Technology, Madras

Chennai, 600036, India

July-November 2017

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Circuit Analysis Using Fourier and Laplace Transforms

Based on

exp(st)being an eigenvector of linear systems Steady-state response toexp(st)isH(s)exp(st)whereH(s)is some scaling factor Signals being representable as a sum(integral) of exponentialsexp(st) Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier series

Periodicx(t)can be represented as sums of complex exponentialsx(t)periodic with periodT0Fundamental (radian) frequency!0=2=T0

x(t) =1∑ k=1a kexp(jk!0t) x(t)as a weighted sum of orthogonal basis vectors exp(jk!0t)

Fundamental frequency!0and its harmonics

a k: Strength ofkthharmonic Coefficientsakcan be derived using the relationship a k=1 T

0∫

T0

0x(t)exp(jk!0t)dt

“Inner product" ofx(t)with exp(jk!0t)

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier series

Alternative form

x(t) =a0+1∑ k=1b kcos(k!0t) +cksin(k!0t)Coefficientsbkandckcan be derived using the relationship b k=2 T

0∫

T0

0x(t)cos(k!0t)dt

c k=2 T

0∫

T0

0x(t)sin(k!0t)dt

Another alternative form

x(t) =a0+1∑ k=1d kcos(k!0t+ϕk) Coefficientsbkandckcan be derived using the relationship d b

2k+c2k

k=tan1(ck b k) Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier series Ifx(t)satisfies the following (Dirichlet) conditions, it can be represented by a Fourier series x(t)must be absolutely integrable over a period T0

0jx(t)jdtmust exist

x(t)must have a finite number of maxima and minima in the interval[0;T0] x(t)must have a finite number of discontinuities in the interval[0;T0] Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform Aperiodicx(t)can be expressed as an integral of complex exponentials x(t) =1

2∫

1 1 X !(!)exp(j!t)d! x(t)as a weighted sum(integral) of orthogonal vectors exp(j!t)

Continuous set of frequencies!

X !(!)d!: Strength of the component exp(j!t) X !(!): Fourier transform ofx(t) X !(!)can be derived using the relationship X 1 1 x(t)exp(j!t)dt

“Inner product" ofx(t)with exp(j!t)

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier seies Ifx(t)satisfies either of the following conditions, it can be represented by a Fourier transform

FiniteL1norm∫1

1 jx(t)jdt<1

FiniteL2norm∫1

1 jx(t)j2dt<1 Many common signals such as sinusoids and unit step fail these criteria

Fourier transform contains impulse functions

Laplace transform more convenient

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform x(t)in volts)X!(!)has dimensions of volts/frequencyX

!(!): Density over frequencyTraditionally, Fourier transformXf(f)defined as density per “Hz"(cyclic frequency)

Scaling factor of 1=2when integrated over!(radian frequency) x(t) =∫ 1 1

Xf(f)exp(j2ft)df

1

2∫

1 1 X !(!)exp(j!t)d! X !(!) =Xf(!=2) X f(f): volts/Hz(density per Hz) ifx(t)is a voltage signal X f(f) =∫ 1 1 x(t)exp(j2ft)dt X 1 1 x(t)exp(j!t)dt Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform as a function ofj!

Ifj!is used as the independent variable

x(t) =1 j2∫ j1 j1X(j!)exp(j!t)d(j!)

X(j!) =X!(!)

Same function, butj!is the independent variable

Scaling factor of 1=j2

Withj!as the independent variable, the definition is the same as that of the

Laplace transform

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform pairs

Signals in1 t 1

1$2(!)

exp(j!0t)$2(!!0) cos(!0t)$(!!0) +(!+!0) sin(!0t)$ j (!!0) j (!+!0) exp(ajtj)$2a a 2+!2

Not very useful in circuit analysis

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform pairs

Signals in 0t 1

u(t)$(!) +1 j! exp(j!0t)u(t)$(!!0) +1 j(!!0) cos(!0t)u(t)$(!!0) +(!+!0) +j! 20!2 sin(!0t)u(t)$ j (!!0) j (!+!0) +!0 20!2 exp(at)u(t)$1 j!+a Useful for analyzing circuits with inputs starting att=0 Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Circuit analysis using the Fourier transform

For an input exp(j!t), steady state output isH(j!)exp(j!t)A general inputx(t)can be represented as a sum(integral) of complex

exponentials exp(j!t)with weightsX(j!)d!=2 x(t) =1

2∫

1 1

X(j!)exp(j!t)d!

Linearity)steady-state outputy(t)is the superposition of responses

H(j!)exp(j!t)with the same weightsX(j!)d!=2

y(t) =1

2∫

1

1Y(j!)z

X(j!)H(j!)exp(j!t)d!

Therefore,y(t)is the inverse Fourier transform ofY(j!) =H(j!)X(j!) Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Circuit analysis using the Fourier transformFourier transform

Inverse

Fourier

transform circuit analysisx(t)y(t) X(j!)

Y(j!) =H(j!)X(j!)

H(j!)

CalculateX(j!)

CalculateH(j!)

Directly from circuit analysis

From differential equation, if given

Calculate(look up) the inverse Fourier transform ofH(j!)X(j!)to gety(t) Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Circuit analysis using the Fourier transform In steady state with an input of exp(j!t), “Ohms law" also valid for L, C+ v R+ v C+ v Li Ri Ci L R C L v(t) i(t) v(t)=i(t)

Resistor

v R=RiR RI

Rexp(j!t)

I

Rexp(j!t)

R

Inductor

v

L=L(diL=dt)

j!LILexp(j!t) I

Lexp(j!t)

j!L

Capacitor

i

C=C(dvC=dt)

V

Cexp(j!t)

j!CVCexp(j!t)

1=(j!C)

I

R,IL,VC: Phasors corresponding toiR,iL,vC

Use analysis methods for resistive circuits with dc sources to determineH(j!)asratio of currents or voltages

e.g. Nodal analysis, Mesh analysis, etc.

No need to derive the differential equation

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Example: Calculating the transfer function+- V sRL2 C 1 C 3V 1V 3I 2I 0

Mesh analysis with currentsI0,I2

2 6 64R+1
j!C11 j!C1 1 j!C1j!L2+1 j!C1+1 j!C33 7 75[
I0I 2] =[Vs 0] I 0(j!) V s(j!)=(j!)3C1C3L2+ (j!) (C3+C1) (j!)3C1C3L2+ (j!)2C3L2+ (j!) (C3+C1)R+1 I 2(j!) V s(j!)=(j!)C3 (j!)3C1C3L2+ (j!)2C3L2+ (j!) (C3+C1)R+1 V

1= (I0I2)=(j!C1),V3=I2=(j!C3)

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Example: Calculating the response of a circuit+-R C v o(t) v i(t) v i(t) =Vpexp(at)u(t) From direct time-domain analysis, with zero initial condition v o(t) =Steady-state response z V p

1aCRexp(at)u(t)Transient response

z V p

1aCRexp(t=RC)u(t)

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Example: Calculating the response of a circuit+-R C+ vo(t)vi(t)H(j!)Vi(j!)Vo(j!) v i(t) =Vpexp(at)u(t) V i(j!) =Vp a+j!

Using Fourier transforms and transfer function

V o(j!) =Vp a+j!1

1+j!CR

Vp 1aCR1 a+j!Vp

1aCRCR

1+j!CR

From the inverse Fourier transform

v o(t) =Steady-state response z V p

1aCRexp(at)u(t)Transient response

z V p

1aCRexp(t=RC)u(t)

We get both steady-state and transient responses with zero initial condition Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform of the input signal-20 0 2000.51jVi(j!)j vi(t) =exp(-t)u(t);Vi(j!) = 1=(1 +j!) -20 0 20 !-10001006Vi(j!)[o]

Fourier transform magnitude and phase(Vp=1,a=1)

Shown for20!20

Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Fourier transform of the input signal-5 0 5-101

Samples of constituent sinusoids

-5 0 5 t-101 x(t) vi(t) 1

2πR

20 !20Vi(j!)exp(j!t)d! Fourier transform componentsVi(j!)d!exp(j!t): Sinusoids fromt=1to1

A small number of sample sinusoids shown above

The integral is close, but not exactly equal tox(t) Extending the frequency range improves the representation Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..How do we get the total response by summing up steady-state responses? Fourier transform componentsVi(j!)d!exp(j!t): Sinusoids fromt=1to1

For anyt>1, the output is the

steady-state response

H(j!)Vi(j!)d!exp(j!t)

Sum(integral) of Fourier transform components produces the inputx(t)(e.g. exp(at)u(t)) which starts fromt=0

Sum(integral) of

steady-state responses produces the output including the response to changes att=0, i.e. including the transient response

Inverse Fourier transform ofVi(j!)H(j!)is the

total zero-state response Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Accommodating initial conditions+- v C+ v′CA B A B v

C(0) =V0v

′C(0) =0A B iLA B i′Li

L(0) =I0i

′L(0) =0 I 0u(t) V 0u(t) C C L L A capacitor cannot be distinguished from a capacitor in series with a constant voltage source An inductor cannot be distinguished from an inductor in parallel with a constant current source Initial conditions reduced to zero by inserting sources equal to initial conditions Treat initial conditions as extra step inputs and find the solution Step inputs because they start att=0 and are constant afterwards Nagendra Krishnapura https://www.ee.iitm.ac.in/nagendra/ Circuit Analysis Using Fourier and Laplace Transforms ..Accommodating initial conditions+- +-v

C(0) =V0R

C+ v o(t)v i(t) v i(t) =Vpexp(at)u(t)v ′C(0) =0R C+ v o(t)vi(t)+ v ′C(t) v x(t) =V0u(t) v x(t) V o(j!) =Vi(j!)H(j!)z 1

1+j!CR+Vx(j!)H

x(j!)z j!CR

1+j!CR

Vp a+j!1

1+j!CR+V0(

(!) +1 j!) j!CR

1+j!CR

Vp 1aCR( 1 a+j!CR

1+j!CR)

+V0CR

1+j!CR

v o(t) =Vp

1aCRexp(at)u(t) +(

V oVp 1aCR)quotesdbs_dbs8.pdfusesText_14
[PDF] application of fourier transform pdf

[PDF] application of fourier transform ppt

[PDF] application of mathematics in computer

[PDF] application of mathematics in computer engineering

[PDF] application of mathematics in computer science

[PDF] application of mathematics in computer science engineering

[PDF] application of pumping lemma for regular languages

[PDF] application of z transform in electronics and communication engineering

[PDF] application of z transform in image processing

[PDF] application of z transform in signals and systems

[PDF] application of z transform pdf

[PDF] application of z transform to solve difference equation

[PDF] application of z transform with justification

[PDF] application pour apprendre l'anglais gratuit sur pc

[PDF] application security risk assessment checklist