[PDF] Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE





Previous PDF Next PDF



LALGÈBRE LINÉAIRE POUR TOUS

Notes du cours d'Algèbre linéaire pour les économistes donné en deuxième année de ici de l'application inverse qui a un nombre non nul x lui associe son ...



Chapitre 2 - Les Bases de lalgèbre linéaire

l'addition et tout réel non nul a un inverse pour la multiplication. L'algèbre linéaire s'est développé au début du 20ème siècle pour étudier des.



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 Cours d'algèbre linéaire ... dont l'un des vecteurs vi est nul est liée ... Le sev F des combinaisons linéaires des vecteurs x1



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

linéaire des (xi)i?I toute somme. ? i?I ?ixi dans laquelle



Accélérateurs logiciels et matériels pour lalgèbre linéaire creuse sur

21 juil. 2015 réfléchir sur la distribution du calcul d'algèbre linéaire sur plusieurs ... La distribution des coefficients non nuls de la matrice creuse ...



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

personne ayant besoin d'outils de bases d'Algèbre linéaire. forment une base pour F si on ne trouve pas on prend un vecteur non nul et.



INTRODUCTION À LALGÈBRE LINÉAIRE

N.B. Le 0 dans cette définition désigne bien sûr le vecteur nul. Dé nition bis On appelle sous-espace d'un espace vectoriel réel E une partie non vide F de E.



A propos de lenseignement de lalgèbre linéaire aux étudiants en

Résumé : Centré sur l'algèbre linéaire comme un des éléments importants du programme de mathématiques en économie notre travail de thèse (en cours) traite 



[PDF] LALGÈBRE LINÉAIRE POUR TOUS - Mathématiques

Préface L'algèbre linéaire est un langage universel qui sert à décrire de nombreux phénomènes en mé- canique électronique et économie par exemple



[PDF] ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 · - On calcule un vecteur propre pour chaque valeur propre - Lorsqu'on exprime la matrice dans la base constituée par les vecteurs propres on 



[PDF] Chapitre 2 - Les Bases de lalgèbre linéaire

LES BASES DE L'ALGÈBRE LINÉAIRE — La commutativité permet d'échanger les termes d'une somme — On a 0 + u = u pour tout u 2 E — L'opposé de u est noté u 



[PDF] Notes de cours - Algèbre Linéaire

Pour tout i ? {1 n} et j ? {1 p} on note Eij la matrice dont tous les coefficients sont nuls sauf celui à la i-ème ligne et j-ème colonne qui vaut 



[PDF] L1 INTRODUCTION À LALGÈBRE LINÉAIRE

L1 INTRODUCTION À L'ALGÈBRE LINÉAIRE Les exercices qui suivent sont la traduction française des exercices du cha- pitre 1 – 3 du livre Linear Algebra with 



[PDF] Alg`ebre linéaire 1 - Département de mathématiques - UQAM

28 déc 2020 · L'espace vectoriel nul est l'ensemble `a un élément {0} C'est un espace vectoriel sur R On a évidemment 0+0=0 et a0=0 pour tout scalaire a



[PDF] Algèbre linéaire

29 mar 2023 · Ce polycopié est destiné aux étudiants de l'Unité d'Enseignement MAT201 Cette unité d'enseignement est obligatoire pour les étudiants de 



[PDF] Notes de Cours dALGEBRE LINEAIRE - Mathématiques à Angers

linéaire des autres vecteurs de F ; - si on supprime les vecteurs nuls éventuels; - si on intervertit deux vecteurs Preuve : Faisons-le pour i = 1 par 



[PDF] livre-algebre-1pdf - Exo7 - Cours de mathématiques

La seconde partie est entièrement consacrée à l'algèbre linéaire C'est un domaine totalement nouveau pour vous et très riche qui recouvre la notion de 



[PDF] Algèbre linéaire – Cours I Espaces vectoriels - IRMA Strasbourg

Il est fabriqué à partir des ??ui à l'aide des deux opérations possibles sur des vecteurs : multiplication par des nombres et addition entre eux Toute l' 

  • Comment comprendre l'algèbre linéaire ?

    Elle consiste à étudier un corps comme un espace vectoriel sur un sous-corps. Ainsi chaque sous-corps permet de considérer la structure initiale comme un espace vectoriel particulier. Un exemple d'application est celui des figures constructible à la règle et au compas.
  • Comment Puis-je savoir qu'il est linéaire ?

    Si vous parlez d'un Système dynamique , c'est la même chose : si sa Représentation d'état peut être mise sous forme d'un système d'équations linéaires, il est linéaire.
  • Comment enseigner l'algèbre ?

    Comment comprendre l'alg?re

    1Connaitre ses objectifs en alg?re.2Appliquer l'ordre des opérations mathématiques.3Utiliser des variables.4Résoudre des problèmes d'alg?re avec des opérations inverses.5Acquérir des bases solides pour apprendre.
  • Alg?re 1 : Cours-Résumés-Exercices-Examens-Corrigés
    L'alg?re linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires.

Cours d"Algèbre I et II avec Exercices

Corrigés

Imene Medjadj

Table des matières

Chapitre 1. Introduction 5

Chapitre 2. Élément de logique et méthodes de raisonnement avec Exercices

Corrigés 7

1. Régles de logique formelle 7

2. Méthodes de raisonnement 12

3. Exercices Corrigés 13

Chapitre 3. Théorie des ensembles avec Exercices Corrigés 19

1. Notion d"ensemble et propriétés 19

2. Applications et relations d"équivalences 22

3. Relations Binaires dans un ensemble 26

4. Exercices Corrigés 28

Chapitre 4. Structures Algébriques avec Exercices Corrigés 35

1. Lois De Composition Internes 35

2. Groupes 36

3. Anneaux 36

4. Corps 36

5. Exercices Corrigés 37

Chapitre 5. Notion deIK-Espaces vectoriels(IKétant un Corps Commutatif) avec Exercices Corrigés 43

1. Espace vectoriel et sous espace vectoriel 43

2. Somme de deux sous espaces vectoriels 45

3. Somme directe de deux sous espaces vectoriels 45

4. Familles génératrices, familles libres et bases 45

5. Notion d"Application Linéaire 48

6. Exercices Corrigés 51

Chapitre 6. Notion de Matrice Associée à une Application Linéaire et Calcul Algébrique sur les Matrices avec Exercices Corrigés 57

1. Espace vectoriel des matrices 57

2. Produit de deux matrices 59

3. Matrices carrées 60

4. Les Déterminants 61

5. Relations entre une application linéaire et sa matrice Associée 65

6. Matrices et Changements de Bases 683

4 TABLE DES MATIÈRES

7. Diagonalisation 70

8. Systèmes d"équations linéaires 73

9. Exercices Corrigés 77

Bibliographie 83

CHAPITRE 1

Introduction

Ce document cours d"Algèbre I et II avec exercices corrigés recouvre le programme d"Algèbre linéaire de la 1ère année universitaire. Le lecteur trouvera une partie cours qui a été enseigné et à la fin de chaque chapitre une partie exercices corrigés dont la plupart ont été proposé dans le cadre de travaux dirigés ou ont fait l"objet de contrôle des connaissances. Il est destiné principalement aux étudiants de la 1ère année L.M.D. ainsi que toute personne ayant besoin d"outils de bases d"Algèbre linéaire. Nous espérons que ce polycopié réponde aux attentes des étudiants et qu"il les aidera à réussir.5

CHAPITRE 2

Élément de logique et méthodes de raisonnement avec

Exercices Corrigés

1. Régles de logique formelleDéfinition1.1.une proposition est une expression mathématique à laquelle on

peut attribuer la valeur de vérité vrai ou faux.Exemple1.2.(1)?Tout nombre premier est pair?, cette proposition est

fausse.(2)⎷2est un nombre irrationnel, cette proposition est vraie(3)2est inférieure à4, cette proposition est vraieDéfinition1.3.Toute proposition démontrée vraie est appelée théorème (par

exemple le théorème de PYTHAGORE, Thalès...)

La négation?(nonP)?,?P?:Définition1.4.SoitPune proposition, la négation dePest une proposition

désignant le contraire qu"on note(nonP),ou bienP,on peut aussi trouver la notation ?P. Voici sa table de vérité.PP 10 01

Exemple1.5.(1)SoitE?=∅,P: (a?E), alorsP: (a /?E).(2)P:la fonctionfest positive, alors?P:la fonctionfn"est pas positive.(3)P:x+ 2 = 0, alors(nonP) :x+ 2?= 0.

1.1. Les connecteurs logiques.SoitP,Qdeux propositions

1) La conjonction?et?,? ? ?Définition1.6.la conjonction est le connecteur logique?et?,? ? ?, la

proposition(PetQ)ou(P?Q)est la conjonction des deux propositionsP,Q.-(P?Q)est vraie siPetQle sont toutes les deux.-(P?Q)est fausse dans les autres cas. On résume tout ça dans la table de vérité

suivante.7

82. ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

PQP?Q111

100
010 000 Exemple1.7.(1)2est un nombre pair et3est un nombre premier, cette

2) La disjonction?ou?,? ? ?Définition1.8.la disjonction est un connecteur logique?ou?,? ? ?, on

note la disjonction entreP,Qpar(PouQ),(P?Q). P?Qest fausse siPetQsont fausses toutes les deux, sinon(P?Q)est vraie. On résume tout ça dans la table de vérité suivante.PQP?Q111 101
011 000

3)L"implicationDéfinition1.10.L"implication de deux propositionsP,Qest notée :P?Qon

ditPimpliqueQou bien siPalorsQ.P?Qest fausse siPest vraie etQest fausse, sinon(P?Q)est vraie dans les autres cas.PQP?Q111 100
011 001 (3)Omar a gagné au loto?Omar a joué au loto. Vraie c"est une conséquence.

4)La réciproque de l"implication

1. RÉGLES DE LOGIQUE FORMELLE 9

Définition1.12.La réciproque d"une implication(P?Q)est une implication

mon parapluie, alors il pleut).(3)La réciproque de : (Omar a gagné au loto?Omar a joué au loto),est:

(Omar a joué au loto?Omar a gagné au loto).

5)La contraposée de l"implicationSoitP,Qdeux propositions, la contraposée

de(P?Q)est(Q?P), on a (P?Q)??(Q?P)Remarque1.14.(P?Q)et(Q?P)ont la même table de vérité, i.e., la même valeur de vérité.Exemple1.15.(1)La contraposée de :(Il pleut, alors je prends mon para-

pluie),est(je ne prends pas mon parapluie, alors il ne pleut pas).(2)La contraposée de :( Omar a gagné au loto?Omar a joué au loto),est:

(Omar n"a pas joué au loto?Omar n"a pas gagné au loto).

6)La négation d"une implicationThéorème1.16.SoitP,Qdeux propositions on a(P?Q)?(P?Q).Exemple1.17.(1)La négation de : (il pleut, alors je prends mon parapluie),

est: (il pleut et je ne prends pas mon parapluie).(2)La négation de : (Omar a gagné au loto?Omar a joué au loto),est: (Omar

a gagné au loto et Omar n"a pas joué au loto).(3)(x?[0,1]?x≥0)sa négation :(x?[0,1]?x <0).

Conclusion(1)La négation de(P?Q)est(P?Q).(2)La contraposée de(P?Q)est(Q?P).(3)La réciproque de(P?Q)est(Q?P).Remarque1.18.(P?Q)?(P?Q).

102. ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

preuve.Il suffit de montrer que(P?Q)a la même valeur de vérité que(P?Q), on le voit bien dans la table de vérité suivante :PQPP?QP?Q11011 10000
01111
00111

7)L"équivalence

Définition1.19.l"équivalence de deux propositionsP,Qest notéeP?Q, on peut aussi écrire(P?Q)et(Q?P). On dit queP?QsiPetQont la même valeur de verité, sinon(P?Q)est fausse.PQP?Q111 100
010 001 Remarque1.20.(1)P?Qc"est à direPn"est pas équivalente àQlorsque

P?QouQ?P.(2)P?Qpeut être luePsi et seulement siQ.Exemple1.21.(1)x+ 2 = 0?x=-2.(2)Omar a gagné au loto?Omar a joué au loto.Théorème1.22.SoitP,Qdeux propositions on a :

(P?Q)?(P?Q)?(Q?P).preuve.

PQP?QQ?P(P?Q)?(Q?P)(P?Q)111111

100100

011000

001111

8)Propriétés des connecteurs logiquesQuelle que soit la valeur de vérité des

propositionsP,Q,Rles propriétés suivantes sont toujours vraies.(1)P?P.(2)P?P.(3)P?P?P.(4)P?Q?Q?P.Commutativité de?(5)P?Q?Q?P.Commutativité de?

1. RÉGLES DE LOGIQUE FORMELLE 11

(6)((P?Q)?R)?(P?(Q?R)).Associativité de?(7)((P?Q)?R)?(P?(Q?R)).Associativité de?(8)P?P?P(9)P?(Q?R)?(P?Q)?(P?R)).(10)P?(Q?R)?(P?Q)?(P?R)).(11)P?(P?Q)?P.(12)P?(P?Q)?P.(13)P?Q?P?QLois de Morgan(14)P?Q?P?QLois de Morgan(15)(P?Q)?(P?Q)?(Q?P).preuve.(13)

PQPQP?QP?QP?Q

1100100

1001011

0110011

0011011

(14)

PQPQP?QP?QQ?P

1100111

1001000

0110111

0011111

1.2. Les quantificateurs.

(1)Quantificateur universel? ? ? La relation pour tousxtel que P(x) est notée :?x, P(x)se lit quel que soit x, P(x).(2)Quatificateur existentiel? ? ?

la relation il existe unxtel queP(x)est notée :?x, P(x).Remarque1.23.Il existe un et un seul élémentxdeEc"est à dire un uniquex,

P(x)est notée :?!x?E,P(x)Exemple1.24.Ecrire à l"aide des quantificateurs les propositions suivantes :

(1)P(x) :La fonctionfest nulle pour tousx?IRdevient P(x) :?x?IR, f(x) = 0.(2)P(x) :la fonctionfs"annule enx0devient P(x) :?x0?IR, f(x0) = 0.Remarque1.25.Les relations?x,?y,P(x,y)et?y,?x,P(x,y)sont différentes, dans la premièreydépend dextandis que dans la secondeyne dépend pas dex.

122. ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

Exemple1.26.(1)Tous les étudiants de la section1ont un groupe sanguin. ?étudiant?section1,?un groupe sanguin, étudiant a un groupe sanguin.

Vraie(cela veut dire que chaque étudiant a un groupe sanguin).(2)Il existe un groupe sanguin pour tous les étudiants de la section1.?un groupe

sanguinO-,?l"étudiant de section1, l"étudiant aO-.Fausse(cela veut dire

que tous les étudiants ont le même groupe sanguin ce qui est peut probable).(3)La proposition(?x?IR,?y?IR:x+y= 0)est vraie en effet?x?IR,?y=

-x?IR,x+ (-x) = 0.(4)?y?IR,?x?IR,x2≥yc"est vraiecar?y= 0,?x?IR,x2≥0.

Régles de négations

SoitP(x)une proposition,(1)la négation de?x?E,P(x)est :?x?E,P(x).(2)la négation de?x?E,P(x)est :?x?E,P(x).Remarque1.27.(1)?x?E,?y?E,P(x,y)veut dire quexest constante

(fixé), il est indépendant deyqui varie dansE.(2)?x?E,?y?,P(x,y)veut direydépendx, par une certaine relationftelle

quey=f(x).(3)On peut permuter entre deux quantificateurs de la même nature : ?x,?y,P(x,y)? ?y,?x,P(x,y). ?x,?y,P(x,y)? ?y,?x,P(x,y).Exemple1.28.(1)la négation de?? >0,?q?Q+tel que :0< q < ?

2. Méthodes de raisonnement

Pour montrer que(P?Q)est vraie on peut utiliser ce qui suit :(1)Méthode de raisonnement direct

On suppose quePest vraie et on démontre queQl"est aussi.Exemple2.1.Montrons que pourn?INsinest pair?n2est pair.

On suppose quenest pair, i.e.,?k?Z,n= 2kdonc

n.n= 2(2k2)?n2= 2k?

on posek?= 2k2?Zainsi?k??Z,n2= 2k?,n2est pair, d"où le résultat.(2)Méthodes du raisonnement par la contraposée

Sachant que(P?Q)?(Q?P), pour montrer queP?Qon utilise la contraposée, c"est à dire il suffit de montrer queQ?Pde manière directe, on suppose queQest vraie et on montre quePest vraie.

3. EXERCICES CORRIGÉS 13

Exemple2.2.Montrons quen2est impair?nest impair. Par contrapo-

sée il suffit de montrer que sinest pair?n2est pair voir l"exemple précédent.(3)Raisonnement par l"absurde

Pour montrer queRest une proposition vraie on suppose queRest vrai et on tombe sur une contradiction (quelque chôse d"absurde), quandR:P?Qest une implication par l"absurde on suppose queR:R?Qest vraie et on tombe sur une contradicition.Exemple2.3.(a)Montrer que ⎷2est un irrationnel.(b)nest pair?n2est pair, par l"absurde : on suppose que n est pair et que n

2est impaire contradiction(4)Contre exemple

Pour montrer qu"une proposition est fausse il suffit de donner ce qu"on appelle un contre-exemple c"est à dire un cas particulier pour lequel la proposition est fausse.Exemple2.4.(nest un nombre pair )?(n2+1est pair), fausse car pour n= 2,4 + 1 = 5n"est pas pair, c"est un contre-exemple.(5)Raisonnement par recurrence Pour montrer queP(n) :?n?IN,n≥n0,Pn(x)est vraie on suit les étapes

suivantes :(a)On montre queP(n0)est vraie, (valeur initiale).(b)On suppose queP(n)est vraie à l"ordren(c)On montre queP(n+ 1)est vraie à l"ordren+ 1

AlorsPest vrai pour tousn≥n0.Exemple2.5.Montrer?n?IN?: 1 + 2 +...+n=n(n+1)2 (a)Pourn= 1,P(1)est vraie1 =1(2)2 .(b)On suppose que1 + 2 +...+n=n(n+1)2 est vraie.(c)On montre que1 + 2 +...+n+ 1 =(n+1)(n+2)2 est vraie,

1+2+...+n+1 = 1+2+...+n+(n+1) =n(n+1)2

+(n+1) =(n+1)(n+2)2 ainsiPest vraie à l"ordren+ 1alors?n?IN?: 1 + 2 +...+n=n(n+1)2 est vraie.

3. Exercices CorrigésExercice1.Donner la négation des propositions suivantes :

(1)?x?IR,?y?IR,2x+y >3.(2)?? >0,?α >0,|x|< α? |x2|< ?.

142. ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

?P:?? >0,?α >0,|x|< α? |x2| ≥?(3)P:?x?IR,((x= 0)?(x?]2,4]))

?P:pour tousM?IR+,il existen?INtel que :|Un|> M.Remarque3.1.(1)a < bveut dire(a < b)?(a?=b)sa négation est :

(a > b)?(a=b)c"est à direa≥b.(2)a < b < cveut dire(a < b)?(b < c)sa négation est :(a≥b)?(b≥c).Exercice2.Exprimer les assertions suivantes à l"aide des quantificateurs et

répondre aux questions :(1)Le produit de deux nombres pairs est-il pair? (2)Le produit de deux nombres impairs est-il impair? (3)Le produit d"un nombre pair et d"un nombre impair est-il pair ou impair? (4)Un nombre entier est pair si et seulement si son carré est pair? Solution.(1)Le produit de deux nombres pairs est-il pair?

SoitP={2k/k?Z}l"ensemble des nombres pairs.

?n,m?P,n×m?P? Soientn,m?P, alors?k1?Z/n= 2k1,?k2?Z/m= 2k2d"oùn×m=

2(2k1k2) = 2k3,ainsi?k3= 2k1k2?Z/n×m= 2k3?n×m?Ple produit

est pair.(2)Le produit de deux nombres impairs est-il impair? SoitI={2k+ 1/k?Z}l"ensemble des nombres impairs.?n,m?I,n×m? I? Soientn,m?I, alors?k1?Z/n= 2k1+ 1,?k2?Z/m= 2k2+ 1d"où n×m= 2(2k1k2+k1+k2) + 1 = 2k3+ 1,ainsi?k3= 2k1k2+k1+k2?

Z/n×m= 2k3+ 1?n×m?Ile produit est impair.(3)Le produit d"un nombre pair et d"un nombre impair est-il pair ou impair?

?n?P,m?I,n×m?P?,n×m?I? Soientn?P,m?I,alors?k1?Z/n= 2k1,?k2?Z/m= 2k2+ 1d"où n×m= 2(2k1k2+k1) = 2k3,ainsi?k3= 2k1k2+k1?Z/n×m= 2k3? n×m?Ile produit est pair.(4)Un nombre entier est pair si et seulement si son carré est pair? ?n?Z,npair?n2est pair.

3. EXERCICES CORRIGÉS 15

Montrons quenpair?n2est pair.

Soitn?P, alors?k1?Z/n= 2k1,d"oùn2=n.n= 2(2k21),ainsi?k2= 2k21? Z/n

2= 2k2il est pair.

Montrons quen2pair?nest pair.

Par contraposée, on doit montrer quenest impair?n2est impair, c"est vrai cas particulier de la question 2), ainsi la propositionn2pair?nest pair est

vérifiée, de plusnpair?n2est pair? ?n?Z,npair?n2est pair est vraie.Exercice3.Indiquer lesquelles des propositions suivantes sont vraies et celles

qui sont fausses.(1)?x?IR,?y?IR: 2x+y >0.(2)?x?IR,?y?IR: 2x+y >0.(3)?x?IR,?y?IR: 2x+y >0.(4)?x?IR,?y?IR: 2x+y >0.(5)?x?IR,?y?IR:y2> x.(6)?x?IR,?y?IR: (2x+y >0ou2x+y= 0).(7)?x?IR,?y?IR: (2x+y >0et2x+y= 0).Solution.(1)?x?IR,?y?IR: 2x+y >0,est vraie car?x?IR,?y=

-2x+ 1?IR: 2x+y >0.(2)?x?IR,?y?IR: 2x+y >0,est fausse car , sa négation?x?IR,?y?IR: -2x?IR: 2x-2x= 0(même si2x+y?0) ou bien on peut dire que

?x?IR,?y=-2x+ 1 : 2x-2x+ 1 = 1>0(même si2x+y?= 0).(7)?x?IR,?y?IR: (2x+y >0et2x+y= 0)est fausse car on ne peut jamais

avoir(2x+y >0et2x+y= 0)en même temps.Exercice4.Par l"absurde montrer que : (1)⎷2/?Q.(2)?n?IN, n2pair?nest pair.Solution.(1)Par l"absurde on suppose que ⎷2est un rationnel i.e.,?a,b? IN, a?b= 1,/⎷2 = ab ?a2b

2?2b2=a2alors2divisea,aest pair?k?IN/n=

2k,ainsi

2b2= 4k2?b2= 2k2,

on déduit quebest pair aussi ora,bsont premier entre eux contradiction, ce que nous avons supposé au départ est faux c"est à dire⎷2/?Q.

162. ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

(2)Soitn?INpar l"absurde supposons quen2est pair etnest impair, alors?k? Ztel quen= 2k+1d"oùn2= 2(2k2+2k)+1 = 2k?+1,k?= (2k2+2k)?Z,n2 est impair contradiction carn2est pair. Ce que nous avons supposé au départ est faux c"est à dire?n?IN, n2pair?nest pair est vraie.Exercice5.Par contraposée, montrer que divisible par8) est vraie. Soitnimpair alors?k?Ztel quen= 2k+ 1et doncn2= 4k2+ 4k+ 1? n

2-1 = 4k2+ 4k= 4k(k+ 1)il suffit de montrer quek(k+ 1)est pair.

Montrons quek(k+ 1)est pair on a deux cas :

Sikest pair alorsk+ 1est impair donc le produit d"un nombre pair et d"un nombre impair est pair voir exercice2question (3). Sikest impair, alorsk+ 1est pair donc le produit est pair c"est le même raisonnement, (il faut savoir que le produit de deux nombre consécutifs est toujours pair). Ainsik(k+ 1)est pair?k??Z/k(k+ 1) = 2k?,d"oùn2-1 = 4(2k?) = 8k?? n

2-1est divisible par8.(2)Montrons que sa contraposée :(x?= 0?(?? >0,|x|> ?))est vraie.

Soitx?= 0,il existe?=x2

>0tel que|x|>x2 carx?= 0d"où le résultat.Exercice6.Montrer par récurrence que

-?n?IN?: 13+ 23+...+n3=n2(n+1)24-?n?IN?,4n+ 6n-1est un multiple de9.Solution.-Montrons que?n?IN?: 13+ 23+...+n3=n2(n+1)24

.(1)Pourn= 1on a :13=12(2)24 = 1,P(1)est vraie.(2)On suppose que :13+ 23+...+n3=n2(n+1)24 est vraie.(3)On montre que :13+ 23+...+ (n+ 1)3=(n+1)2(n+2)24 est vraie. En utilisant p(n) on obtient : 1

3+ 23+...+ (n+ 1)3= 13+ 23+...+n3+ (n+ 1)3=n2(n+ 1)24

+ (n+ 1)3 1

3+ 23+...+ (n+ 1)3=n2(n+ 1)2+ 4(n+ 1)34

+ (n+ 1)3=(n+ 1)2(n2+ 4n+ 4)4 1

3+ 23+...+ (n+ 1)3=(n+ 1)2(n2+ 2)24

AinsiP(n+ 1)est vraie , alors?n?IN?: 13+ 23+...+n3=n2(n+1)24 .-Montrons que?n?IN?,4n+ 6n-1est un multiple de9,c"est à dire?n? IN ?,?k?Z/4n+ 6n-1 = 9k.

3. EXERCICES CORRIGÉS 17

(1)Pourn= 1on a :?k= 1?Z,4 + 6-1 = 9 = 9(1), P(1)est vraie.(2)On suppose que :?n?IN?,?k?Z/4n+ 6n-1 = 9kest vraie.(3)On montre que :?n?IN?,??k??Z/4n+1+ 6(n+ 1)-1 = 9k?.est vraie.

4 n+1+ 6(n+ 1)-1 = 4.4n+ 6n+ 6-1 = (9-5)4n+ 6n+ 5 = 9.4n-5.4n-5(6n) + 36n+ 5 =-5(4n+ 6n-1) + 9.4n+ 36n,en utilisantPn =-5(9k) + 9.4n+ 9.(4n) = 9(-5k+ 4n+ 4n) ? ?k?=-5k+ 4n+ 4n?Z4n+1+ 6(n+ 1)-1 = 9k?.

CHAPITRE 3

Théorie des ensembles avec Exercices Corrigésquotesdbs_dbs26.pdfusesText_32
[PDF] algèbre-trigonométrie afpa

[PDF] test afpa niveau 4 pdf

[PDF] cours de maths seconde s pdf

[PDF] algo mas 1ere livre du prof

[PDF] programme algobox

[PDF] algobox nombre entier

[PDF] algobox demander valeur variable

[PDF] fonction modulo algobox

[PDF] fiche activité scratch

[PDF] algorigramme définition

[PDF] algorigramme exercice corrigé

[PDF] algorigramme en ligne

[PDF] algorigramme arduino

[PDF] algorigramme sous programme

[PDF] algorigramme 3eme