[PDF] Cours de Calcul Tensoriel avec Exercices corrigés





Previous PDF Next PDF



produit scalaire:Exercices corrigés

Exercices 4 et 5 : orthogonalité de deux vecteurs et produit scalaire nul est un parallélogramme donc les égalités vectorielles.



1 Produit scalaire et produit vectoriel

3. Déterminer une mesure en radians des angles du triangle ABC. Exercice 3. Soient u et v deux vecteurs de R3. Calculer u ? v pour 



Calcul vectoriel – Produit scalaire

Calcul vectoriel – Produit scalaire. COURS & MÉTHODES. EXERCICES & SUJETS CORRIGÉS. Méthodes. 1 Montrer qu'un point est le milieu d'un segment.





Corrigé des exercices – PRODUIT SCALAIRE

Corrigé des exercices – PRODUIT SCALAIRE. Exercice 1 : on considère le carré de centre et de côté 8. Calculer les produits scalaires suivants :.



F2School

7 avr. 2016 Si E est un espace vectoriel sur R muni d'un produit scalaire ... En utilisant la formule du double produit vectoriel (exercice 5)



TD 2 : vecteurs ; produits scalaire vectoriel et mixte

T Exercices théoriques : 1. Dans un repère orthonormé (O;ij



Polycopié dexercices et examens résolus: Mécanique du point

Notions sur produit scalaire et vectoriel;. Notions sur les fonctions trigonométriques;. Galilée : (1564-1642). Le calcul vectoriel a pris naissance lors 



Cours de Calcul Tensoriel avec Exercices corrigés

1.4.5 Bases orthogonales d'un espace vectoriel pré-euclidien . . . . . 18 3.3.1 Produit scalaire d'un produit tensoriel par un vecteur de base 68.



ALG`EBRE LIN´EAIRE Module 2 PAD - Exercices

11 déc. 2008 1-1 Exercices corrigés . ... 1-1.1 Exercice 1a - Produit scalaire . ... G est le sous espace vectoriel orthogonal `a X + X2.



[PDF] produit scalaire:Exercices corrigés

Exercice 1 : produit scalaire en fonction des coordonnées de vecteurs dans un repère orthonormé • Exercice 2 : propriétés du produit scalaire (règles de 



[PDF] Corrigé des exercices – PRODUIT SCALAIRE

Corrigé des exercices – PRODUIT SCALAIRE Exercice 1 : on considère le carré de centre et de côté 8 Calculer les produits scalaires suivants :



[PDF] 1 Produit scalaire et produit vectoriel

1 Produit scalaire et produit vectoriel Exercice 1 Soient u(12?3) et v(215) deux vecteurs de R3 1 Les vecteurs u et v sont-ils colinéaires ?



[PDF] PRODUIT SCALAIRE CORRECTION DES EXERCICES

Exercice 6 : Calculons les produits scalaires suivants On utilise dans cet exercice les méthodes de translation de vecteurs et de projection orthogonale 1 ? 



Le Produit vectoriel - Exercices corrigés 4 PDF - ALLO ACADEMY

Le produit vectoriel Vecteurs et points Cours résumé exercices corrigés devoirs corrigés Examens corrigés Contrôle corrigé travaux dirigés td PDF



[PDF] TD 2 : vecteurs ; produits scalaire vectoriel et mixte

T Exercices théoriques : 1 Dans un repère orthonormé (O;ijk) on considère les vecteursu =i?j+2k etv = ?i?2j+k Donner leurs normes leur produit 



Calcul vectoriel : Cours 40 exercices corrigés Ed 2

Zoom In Zoom Out Fit Width Fit Height Close Recherche; Table des matières Close Envoyer Close Imprimer; Page courante; De



[PDF] Produit scalaire - Calcul vectoriel - Editions Hatier

CORRIGÉS Exercices 1 à 16 223 EXERCICES Calcul vectoriel – Produit scalaire En bref L'outil « produit scalaire » permet de résoudre de nouveaux



[PDF] EXERCICES SUR LE PRODUIT SCALAIRE F2School

7 avr 2016 · Les espaces vectoriels E sur C ou R considérés sont munis d'un produit scalaire noté ( ) linéaire par rapport à la deuxième variable et 



[PDF] Produit vectoriel Corrigé

MATHÉMATIQUES ENSM O11 2013-2014 - 1 - Calcul vectoriel Produit scalaire – Produit vectoriel Corrigé Exercice 1 : 1 2 2 2 1 1 0

:
Cours de Calcul Tensoriel avec Exercices corrigés

Cours de Calcul Tensoriel

avec Exercices corrigés

Table des matières1 Les vecteurs6

1.1 Conventions d"écriture . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Notation des vecteurs et de leurs composantes . . . . . . .. . 6

1.1.2 Convention de sommation . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Sommation sur plusieurs indices . . . . . . . . . . . . . . . . . 7

1.1.4 Symbole de Kronecker . . . . . . . . . . . . . . . . . . . . . . 8

1.1.5 Symbole d"antisymétrie . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Généralisation de la notion de vecteur . . . . . . . . . . . . . . .. . . 9

1.2.1 Exemple de vecteurs . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Propriétés des opérations sur les vecteurs . . . . . . . . .. . . 10

1.2.3 Autres exemples de vecteurs . . . . . . . . . . . . . . . . . . . 11

1.2.4 Définition générale des vecteurs . . . . . . . . . . . . . . . . . 12

1.2.5 Structure d"un ensemble . . . . . . . . . . . . . . . . . . . . . 12

1.3 Bases d"un espace vectoriel . . . . . . . . . . . . . . . . . . . . . . . .13

1.3.1 Exemples de vecteurs indépendants et dépendants . . . .. . . 13

1.3.2 Vecteurs de base . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Décomposition d"un vecteur sur une base . . . . . . . . . . . .14

1.3.4 Changement de base . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Exemple de produits scalaires . . . . . . . . . . . . . . . . . . 16

1.4.2 Définition du produit scalaire . . . . . . . . . . . . . . . . . . 17

1.4.3 Expression générale du produit scalaire . . . . . . . . . . .. . 17

1.4.4 Vecteurs orthogonaux . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.5 Bases orthogonales d"un espace vectoriel pré-euclidien . . . . . 18

1.4.6 Norme d"un vecteur . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Espace vectoriel euclidien . . . . . . . . . . . . . . . . . . . . . . . .21

1.5.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.2 Bases orthonormées . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.3 Composantes contravariantes et covariantes . . . . . . .. . . 22

1.5.4 Expression du produit scalaire et de la norme . . . . . . . .. 24

1.5.5 Changement de base . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.6 Bases réciproques . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.7 Décomposition d"un vecteur sur les bases réciproques. . . . . 26

1.5.8 Produits scalaires des vecteurs de base . . . . . . . . . . . .. 27

1.6 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1

2 Exemples de tenseurs euclidiens38

2.1 Changement de base . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Composantes covariantes du tenseur fondamental . . . .. . . 38

2.1.2 Produit tensoriel de deux vecteurs . . . . . . . . . . . . . . . .40

2.2 Propriétés de changement de base . . . . . . . . . . . . . . . . . . . .42

2.2.1 Tenseur d"ordre deux . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Combinaisons linéaires de tenseurs . . . . . . . . . . . . . . .43

2.2.3 Tenseur d"ordre trois . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Exemples de tenseurs en Physique . . . . . . . . . . . . . . . . . . . .45

2.3.1 Tenseur d"inertie . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Tenseur vitesse de rotation instantanée d"un solide .. . . . . . 46

2.3.3 Tenseurs des propriétés des milieux anisotropes . . . .. . . . 48

2.4 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Algèbre tensorielle59

3.1 Tenseur d"ordre deux . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Exemple de tenseur : produit tensoriel de triplets de nombres . 59

3.1.3 Propriétés du produit tensoriel . . . . . . . . . . . . . . . . . .61

3.1.4 Définition du produit tensoriel de deux espaces vectoriels . . . 62

3.1.5 Expression analytique du produit tensoriel de deux vecteurs . 63

3.1.6 Éléments d"un espace produit tensoriel . . . . . . . . . . . .. 64

3.1.7 Produit tensoriel de deux espaces vectoriels identiques . . . . 65

3.2 Tenseurs d"ordre quelconque . . . . . . . . . . . . . . . . . . . . . . .66

3.2.1 Produit tensoriel de plusieurs vecteurs . . . . . . . . . . .. . 66

3.2.2 Produit tensoriel d"espaces identiques . . . . . . . . . . .. . . 67

3.2.3 Classification des tenseurs . . . . . . . . . . . . . . . . . . . . 68

3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Produit scalaire d"un produit tensoriel par un vecteur de base 68

3.3.2 Produit scalaire d"un tenseur par un vecteur de base . .. . . 69

3.3.3 Produit scalaire de deux tenseurs de même ordre . . . . . .. 70

3.3.4 Composantes d"un tenseur pré-euclidien . . . . . . . . . . .. 70

3.3.5 Expression du produit scalaire . . . . . . . . . . . . . . . . . . 71

3.3.6 Tenseurs euclidiens d"ordre quelconque . . . . . . . . . . .. . 71

3.4 Bases d"un espace produit tensoriel . . . . . . . . . . . . . . . . .. . 72

3.4.1 Bases réciproques . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Composantes des tenseurs pré-euclidiens . . . . . . . . . .. . 73

3.4.3 Tenseurs d"ordre quelconque . . . . . . . . . . . . . . . . . . . 75

3.4.4 Changement de base . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.5 Critère de tensorialité . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Opérations sur les tenseurs . . . . . . . . . . . . . . . . . . . . . . . .79

3.5.1 Addition de tenseurs du même ordre . . . . . . . . . . . . . . 79

3.5.2 Multiplication tensorielle . . . . . . . . . . . . . . . . . . . . .79

3.5.3 Contraction des indices . . . . . . . . . . . . . . . . . . . . . . 79

3.5.4 Multiplication contractée . . . . . . . . . . . . . . . . . . . . . 81

3.5.5 Critères de tensorialité . . . . . . . . . . . . . . . . . . . . . . 82

2

3.6 Tenseurs particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.1 Tenseur symétrique . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.2 Quadrique représentative d"un tenseur symétrique . .. . . . . 84

3.6.3 Le tenseur fondamental . . . . . . . . . . . . . . . . . . . . . . 86

3.6.4 Tenseur antisymétrique . . . . . . . . . . . . . . . . . . . . . . 87

3.6.5 Produit extérieur de deux vecteurs . . . . . . . . . . . . . . . 88

3.7 Groupes ponctuels de symétrie . . . . . . . . . . . . . . . . . . . . . .89

3.7.1 Symétrie d"un cristal et de ses propriétés physiques .. . . . . 89

3.7.2 Effet de la symétrie sur les tenseurs . . . . . . . . . . . . . . . 90

3.8 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Espaces ponctuels105

4.1 Espace ponctuel pré-euclidien . . . . . . . . . . . . . . . . . . . . .. 105

4.1.1 Exemple d"espace ponctuel . . . . . . . . . . . . . . . . . . . . 105

4.1.2 Définition d"un espace ponctuel . . . . . . . . . . . . . . . . . 106

4.1.3 Repères d"un espace ponctuel pré-euclidien . . . . . . . .. . . 107

4.1.4 Distance entre deux points . . . . . . . . . . . . . . . . . . . . 108

4.1.5 Dérivée d"un vecteur . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.6 Notation des dérivées . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Coordonnées curvilignes . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 Systèmes de coordonnées . . . . . . . . . . . . . . . . . . . . . 110

4.2.2 Coordonnées rectilignes . . . . . . . . . . . . . . . . . . . . . . 111

4.2.3 Coordonnées sphériques . . . . . . . . . . . . . . . . . . . . . 111

4.2.4 Coordonnées curvilignes . . . . . . . . . . . . . . . . . . . . . 112

4.3 Repère naturel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Repère naturel en coordonnées sphériques . . . . . . . . . .. 113

4.3.3 Changement de coordonnées curvilignes . . . . . . . . . . . .. 114

4.3.4 Élément linéaire d"un espace ponctuel . . . . . . . . . . . . .. 115

4.4 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Analyse tensorielle129

5.1 Symboles de Christoffel . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1 Tenseurs sur un espace ponctuel . . . . . . . . . . . . . . . . . 129

5.1.2 Problèmes fondamentaux de l"analyse tensorielle . . .. . . . . 130

5.1.3 Symboles de Christoffel en coordonnées sphériques . . .. . . . 131

5.1.4 Définition des symboles de Christoffel . . . . . . . . . . . . . .132

5.1.5 Détermination des symboles de Christoffel . . . . . . . . . .. 133

5.1.6 Changement de base . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.7 Vecteurs réciproques . . . . . . . . . . . . . . . . . . . . . . . 137

5.1.8 Équation des géodésiques . . . . . . . . . . . . . . . . . . . . . 137

5.2 Dérivée covariante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.1 Transport parallèle . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.2 Dérivée covariante d"un vecteur . . . . . . . . . . . . . . . . . 141

5.2.3 Dérivée covariante d"un tenseur . . . . . . . . . . . . . . . . . 143

5.2.4 Propriétés de la dérivée covariante d"un tenseur . . . .. . . . 144

3

5.2.5 Dérivée covariante seconde d"un vecteur . . . . . . . . . . .. 146

5.3 Différentielle absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.1 Différentielle absolue d"un vecteur . . . . . . . . . . . . . . .. 146

5.3.2 Dérivée absolue le long d"une courbe . . . . . . . . . . . . . . 148

5.3.3 Différentielle absolue d"un tenseur . . . . . . . . . . . . . . .. 149

5.3.4 Théorème de Ricci . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3.5 Symboles de Christoffel contractés . . . . . . . . . . . . . . . .151

5.4 Opérateurs différentiels . . . . . . . . . . . . . . . . . . . . . . . . . .152

5.4.1 Vecteur gradient . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.2 Rotationnel d"un champ de vecteurs . . . . . . . . . . . . . . . 153

5.4.3 Divergence d"un champ de vecteurs . . . . . . . . . . . . . . . 153

5.4.4 Laplacien d"un champ de scalaires . . . . . . . . . . . . . . . . 154

5.5 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Espaces de Riemann164

6.1 Exemples d"espace de Riemann . . . . . . . . . . . . . . . . . . . . . 164

6.1.1 Surfaces à deux dimensions . . . . . . . . . . . . . . . . . . . 164

6.1.2 Disque tournant . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.1.3 Espace de configuration . . . . . . . . . . . . . . . . . . . . . 166

6.2 Métrique riemannienne . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Notion de variété . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.2 Définition des espaces de Riemann . . . . . . . . . . . . . . . 168

6.2.3 Métrique euclidienne et riemannienne . . . . . . . . . . . . .. 169

6.2.4 Conditions nécessaires pour qu"une métrique soit euclidienne . 169

6.3 Propriétés géométriques . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.1 Métrique euclidienne tangente en un point . . . . . . . . . .. 170

6.3.2 Propriétés géométriques déduites des métriques euclidiennes tangentes173

6.4 Propriétés différentielles . . . . . . . . . . . . . . . . . . . . . . . .. 174

6.4.1 Métrique euclidienne osculatrice . . . . . . . . . . . . . . . .. 174

6.4.2 Espace euclidien osculateur . . . . . . . . . . . . . . . . . . . 175

6.4.3 Différentielle absolue et dérivée covariante des tenseurs . . . . 176

6.4.4 Transport parallèle . . . . . . . . . . . . . . . . . . . . . . . . 177

6.4.5 Géodésiques d"un espace de Riemann . . . . . . . . . . . . . . 178

6.5 Déplacement le long d"une courbe . . . . . . . . . . . . . . . . . . . .179

6.5.1 Développement d"une courbe . . . . . . . . . . . . . . . . . . . 179

6.5.2 Déplacement associé à un cycle . . . . . . . . . . . . . . . . . 182

6.5.3 Expression du déplacement associé à un cycle . . . . . . . .. 185

6.6 Tenseur de Riemann-Christoffel . . . . . . . . . . . . . . . . . . . . .189

6.6.1 Détermination du tenseur de Riemann-Christoffel . . . .. . . 189

6.6.2 Composantes covariantes . . . . . . . . . . . . . . . . . . . . . 190

6.6.3 Système de coordonnées normales . . . . . . . . . . . . . . . . 190

6.6.4 Propriétés de symétrie . . . . . . . . . . . . . . . . . . . . . . 191

6.6.5 Première identité de Bianchi . . . . . . . . . . . . . . . . . . . 192

6.6.6 Composantes indépendantes . . . . . . . . . . . . . . . . . . . 192

6.7 Courbure Riemannienne . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.7.1 Le tenseur de rotation en fonction du tenseur de Riemann-Christoffel193

4

6.7.2 Courbure riemannienne . . . . . . . . . . . . . . . . . . . . . . 1946.7.3 Tenseur de Ricci et courbure scalaire . . . . . . . . . . . . . .196

6.7.4 Seconde identité de Bianchi . . . . . . . . . . . . . . . . . . . 196

6.7.5 Tenseur d"Einstein . . . . . . . . . . . . . . . . . . . . . . . . 197

6.8 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5

Chapitre 1Les vecteurs1.1 Conventions d"écriture1.1.1 Notation des vecteurs et de leurs composantes

Les vecteurs et les tenseurs sont représentés par des lettres en caractère gras :x représentera par exemple un vecteur. Les composantes des vecteurs et des tenseurs sont notées par des lettresen italiqueavec des indices. Par exemple, un vecteurx de la géométrie classique, rapporté à une basee1,e2,e3, s"écrira : x=x1e1+x2e2+x3e3(1.1) Nous utiliserons également par la suite pour les composantes, des indices infé- rieurs (voir composantes covariantes et contravariantes).

1.1.2 Convention de sommation

Lorqu"on effectue la somme de certaines quantités, on utilise couramment la lettre grecquesigmamajuscule pour représenter cette sommation. On a par exemple : x

1y1+x2y2+.....+xnyn=n?

i=1x iyi(1.2) La convention de sommation d"Einstein va consister à utiliser le fait que l"indice

répété, ici l"indicei, va définir lui-même l"indication de la sommation. On écrit alors

avec cette convention : n i=1x iyi=xiyi(1.3) La variation de l"indice se fera sur tout le domaine possible, en général de 1 àn,

sauf indication contraire. L"indice répété peut être affecté á des lettres différentes,

ou à une même lettre comme dans l"exemple suivant : A iixj=A11xj+A22xj+.....+Annxj(1.4) 6 Les indices peuvent être simultanément inférieurs ou supérieurs, ou l"un peut être inférieur et l"autre supérieur. Par exemple, l"expressionAikyipourn= 4: A i kyi=A1 ky1+A2 ky2+A3 ky3+A4 ky4(1.5) On remarque que l"expressionAikyicomporte deux sortes d"indices. L"indice de sommationiqui varie de 1 à 4 (de 1 ànen général) peut être remplacé par une lettre quelconque, par exempleAmkymouArkyr. Cet indice qui peut être noté indifféremment, s"appelleindice muet. Par contre, l"indicekqui spécifie un terme particulier est appeléindice libre. Si aucune indication contraire n"est donnée, tout indice libre prendra, de manière implicite, les mêmes valeurs que l"indice muet. Ainsi, l"expressionaijxj=bi, pourn= 3, représente le système d"équations : a

11x1+a12x2+a13x3=b1

a

21x1+a22x2+a23x3=b2

a

31x1+a32x2+a33x3=b3(1.6)

Cette convention ne s"applique qu"aux monômes ou à une seulelettre. Ainsi l"expression(xk+yk)ne représente pas une sommation sur l"indicekmais seulement un élément, par exemplezk= (xk+yk). Par contre le termeAiireprésente la somme : A ii=A11+A22+.....+Ann(1.7) Lorsqu"on voudra parler d"un ensemble de termesA11,A22,.....,Ann, on ne pourra donc pas écrire le symboleAii. La convention de sommation s"étend à tous les symboles mathématiques com- portant des indices répétés. Ainsi, la décomposition d"un vecteurxsur une base e

1,e2,e3, s"écrit pourn= 3:

x=x1e1+x2e2+x3e3=xiei(1.8) En conclusion, toute expression qui comporte un indice deuxfois ré- pété représente une somme sur toutes les valeurs possibles de l"indice répété.

1.1.3 Sommation sur plusieurs indices

La convention de sommation s"étend au cas où figurent plusieurs indices muets dans un même monoôme. Soit, par exemple, la quantitéAijxiyj, celle-ci représente la somme suivante pourietjprenant les valeurs 1 et 2 : A ijxiyj=A1jx1yj+A2jx2yj(sommation suri) =A11x1y1+A12x1y2+A21x2y1+A22x2y2(sommation surj) Si l"expression a deux indices de sommation qui prennent respectivement les valeurs 1,2,...,n, la somme comporten2termes; s"il y a trois indices, on auran3 termes, etc. 7 Substitution -Supposons que l"on ait la relation :

A=aijxiyjavecxi=cijyj

Pour obtenir l"expression deAuniquement en fonction des variablesyj, on ne peut pas écrireA=aijcijyjyjcarun indice muet ne peut pas se retrou- ver répété plus de deux fois dans un monôme. Il faut effectuer au préalable un changment de l"indice muet dans l"une des expressions. Par exemple, on pose : x i=cikyk, et on reporte dans l"expression deA; on obtient :

A=aij(cikyk)yj=aijcikykyj(1.9)

On a ainsi une triple sommation sur les indices muetsi,j,k. La convention de sommation peut être généralisée à un nombre quelconque d"indices.

1.1.4 Symbole de Kronecker

ij=δij=δji=?1si i=jquotesdbs_dbs28.pdfusesText_34
[PDF] principe des travaux virtuels exercices corrigés

[PDF] cas pratique droit des biens corrigé pdf

[PDF] examen du ministère 6e année lecture

[PDF] exemple de demande de dérogation universitaire

[PDF] solution maximale equation différentielle exercice

[PDF] cours de svt terminale s pdf

[PDF] la terminologie médicale

[PDF] correction tp betadine

[PDF] la puissance de la pensée positive norman vincent peale pdf gratuit

[PDF] carnet de lecture original

[PDF] espace métrique complet exercice corrigé

[PDF] exercices dessin industriel avec solution

[PDF] stroke path photoshop

[PDF] qcm electricité corrigé pdf

[PDF] comment remplir formulaire ex-15