[PDF] [PDF] Eulerian and Hamiltonian Paths Circuits - Csduocgr





Previous PDF Next PDF



Hamilton Paths and Hamilton Circuits Hamilton Path Hamilton Hamilton Paths and Hamilton Circuits Hamilton Path Hamilton

*Unlike Euler Paths and Circuits there is no trick to tell if a graph has a Hamilton Path or Circuit. A Complete Graph is a graph where every pair of vertices 



A Search Procedure for Hamilton Paths and Circuits

direct the extension of the partial paths. KEY WORDS AND PHRASES: Hamilton path Hamilton circuit



Thomasons algorithm for finding a second hamiltonian circuit

The first hamiltonian path is obtained from the hamiltonian circuit containing yz by removing the other edge meeting y. Let q be the last vertex of P. One edge 



On Hamiltonian Path and Circuits in Non-Abelian Finite Groups

09-Sept-2016 A Hamiltonian path that formed a cycle is called Hamiltonian circuit. (or Hamiltonian cycle) and the process of determining whether such paths ...



Hamilton Circuits/Graphs

Yes; this is a circuit that passes through each vertex exactly once. 3. Page 4. Hamilton Paths and. Circuits. Euler 



The Mathematics of Touring (Chapter 6)

▷ By contrast an Euler path/circuit is a path/circuit that uses every edge Hamilton Paths and Hamilton Circuits. We can also make a Hamilton circuit ...



NP Completeness of Hamiltonian Circuits and Paths

24-Feb-2015 Now we will look at a proof that Hamiltonian circuits can be reduced to the vertex cover problem and then that Hamiltonian Paths can be reduced ...



8.3 Hamiltonian Paths and Circuits

Then G has a. Hamiltonian circuit if m ≥ ½(n2 – 3n + 6) where n is the number of vertices. Page 5. Hamilton Paths and Circuits. A. is a continuous path that 



Antidirected Hamiltonian Paths in Tournaments* A simple path or

A simple path or circuit in a directed graph is said to be antidirected if every two adjacent edges of the path have opposing orientations in.



Hamiltonian Cycle 3-Color

https://courses.engr.illinois.edu/cs374/sp2021/scribbles/A-2021-04-27.pdf



Hamilton Paths and Hamilton Circuits Hamilton Path Hamilton

*Unlike Euler Paths and Circuits there is no trick to tell if a graph has a Hamilton Path or Circuit. A Complete Graph is a graph where every pair of vertices 



8.3 Hamiltonian Paths and Circuits

Then G has a. Hamiltonian circuit if m ? ½(n2 – 3n + 6) where n is the number of vertices. Page 5. Hamilton Paths and Circuits. A. is a continuous path that 



Polynomial Algorithms for Shortest Hamiltonian Path and Circuit

The problem of finding shortest Hamiltonian path and shortest Hamiltonian circuit in a weighted complete graph belongs to the class of NP-Complete.



NP Completeness of Hamiltonian Circuits and Paths

Feb 24 2015 A graph G has a Hamiltonian Circuit if there exists a cycle that goes through every vertex in G. We want to show that there is a way to reduce ...



HAMILTON PATHS IN GRID GRAPHS* and 1 <-vy <=n}. A

contrast the Hamilton path (and circuit) problem for general grid graphs is shown to be NP-complete. This provides a new



Lesson 4.5 - Hamiltonian Circuits and Paths

Hamiltonian path. If the path ends at the starting vertex it is called a. Hamiltonian circuit. Try to find a Hamiltonian circuit for.



Thomasons algorithm for finding a second hamiltonian circuit

circuit (i.e. when there is an edge in the graph from the end of the hamiltonian path to y). On cubic graphs Thomason's algorithm is finite and completely 



Graph Theory Eulerian and Hamiltonian Graphs

Hamiltonian Circuit: A Hamiltonian circuit in a graph is a closed path that visits every vertex in the graph exactly once. (Such a closed loop must be a cycle.).



A Search Procedure for Hamilton Paths and Circuits

A search procedure is given which will determine whether Hamilton paths or circuits Hamilton path Hamilton circuit



Chapter 6: Graph Theory

Circuit: a path that starts and ends at the same vertex looking at a graph if it has a Hamilton circuit or path like you can with an Euler.



[PDF] Hamilton-Paths-and-Hamilton-Circuits-1pdf

A Hamilton Path is a path that goes through every Vertex of a graph exactly once A Hamilton Circuit is a Hamilton Path that begins and ends at the same vertex



[PDF] 83 Hamiltonian Paths and Circuits

A Hamilton circuit (path) is a simple circuit (path) that contains all vertices and passes through each vertex of the graph exactly once • How can we tell if a 



[PDF] Eulerian and Hamiltonian Paths Circuits - Csduocgr

Eulerian and Hamiltonian Paths Circuits This chapter presents two well-known problems Each of them asks for a special kind of path in a graph



[PDF] Eulerian and Hamiltonian Paths - Csduocgr

Definition 1: An Euler path is a path that crosses each edge of the graph exactly once If the path is closed we have an Euler circuit In order to proceed to 



[PDF] Hamilton Circuits/Graphs

Definition: A simple path in a graph G that passes through every vertex exactly once is called a Hamilton path and a simple circuit in a graph G that passes 



[PDF] Lesson 45 - Hamiltonian Circuits and Paths

In honor of Hamilton and his game a path that uses each vertex of a graph exactly once is known as a Hamiltonian path If the path ends at the starting vertex 



[PDF] Hamilton Paths and Hamilton Cycles

A Hamilton cycle in a graph G is a closed path that passes through each vertex exactly once and in which all the edges are distinct Definition A Hamiltonian 



[PDF] Hamilton circuits (Section 22)

We prove there is a Hamilton circuit by induction Let pm be the statement “As long as m + 1 ? n there is a path visiting m + 1 distinct vertices with no



[PDF] Euler Paths Planar Graphs and Hamiltonian Paths

A set of nodes where there is an path between any two nodes in the Very hard to determine if a graph has a Hamiltonian path



[PDF] hamiltonian path

hamiltonian path • A Hamiltonian path of a graph is a path that visits every node of the graph exactly once • Suppose graph G has n nodes: 12 n



[PDF] Hamilton-Paths-and-Hamilton-Circuits-1pdf

A Hamilton Path is a path that goes through every Vertex of a graph exactly once A Hamilton Circuit is a Hamilton Path that begins and ends at the same vertex



[PDF] 83 Hamiltonian Paths and Circuits

A Hamilton circuit (path) is a simple circuit (path) that contains all vertices and passes through each vertex of the graph exactly once • How can we tell if a 



[PDF] Eulerian and Hamiltonian Paths Circuits - Csduocgr

Eulerian and Hamiltonian Paths Circuits This chapter presents two well-known problems Each of them asks for a special kind of path in a graph



[PDF] Eulerian and Hamiltonian Paths - Csduocgr

Definition 1: An Euler path is a path that crosses each edge of the graph exactly once If the path is closed we have an Euler circuit In order to proceed to 



[PDF] Hamilton Circuits/Graphs

Definition: A simple path in a graph G that passes through every vertex exactly once is called a Hamilton path and a simple circuit in a graph G that passes 



[PDF] Lesson 45 - Hamiltonian Circuits and Paths

Hamiltonian path If the path ends at the starting vertex it is called a Hamiltonian circuit Try to find a Hamiltonian circuit for



[PDF] Hamilton Paths and Hamilton Cycles

Hamiltonian Graphs Definition A Hamilton path in a graph G is a path that contains each vertex of G exactly once Definition A Hamilton cycle in a graph 



[PDF] Hamilton circuits (Section 22)

vn ? v1 is a Hamilton circuit since all edges are present “As long as m + 1 ? n there is a path visiting m + 1 distinct vertices with no



[PDF] Euler Paths Planar Graphs and Hamiltonian Paths

Degree of node A ? The number of edges that include A ? Strongly Connected Component ? A set of nodes where there is an path between any two nodes in 



[PDF] hamiltonian path

monotone circuit value is circuit value applied to monotone circuits c 2011 Prof Yuh-Dauh Lyuu National Taiwan University Page 261 Page 44 

:

Chapter10

EulerianandHamiltonianPaths

Circuits

Thischapterpresentstwowell?knownproblems?Eachofthemasksforasp ecialkind ofthetypesofpaths?EulerianandHamiltonian?havemanyapplicationsinanumb erofdi?eren Problem?TSP??anotherproblemwithgreatpracticalimp ortancewhichhastodowithcircuitswillb eexamined?10?1

Eulerpathsandcircuits

10?1?1TheKonisbergBridgeProblem

Eulergaveaformalsolutionfortheproblemand?asitisb elieved?establishedthegraphtheory?eldinmathematics? ?a?Konisbergbridge ?b?respectivegraph

Figure10?1:Konisb ergbridgeandthegraphinduced1

10?1?2De?ningEulerPaths

Obviously?theproblemisequivalentwiththatof?ndingapathinthegraphof?gure10?1?b?suchthatitcrosseseachedgeexactlyonce?Insteadofanexhaustivesearchofeverypath?Eulerfoundoutaverysimplecriterionforcheckingtheexistenceofsuchpathsinagraph?Asaresult?pathswiththisprop ertyhavehisname?De?nition

Ifthepathisclosed?wehaveanEulercircuit?Inordertopro ceedtoEuler?s

CheckingtheexistenceofanEulerpath

10?1?Euler?stheorem?

overticesofodddegree?Pr oof??

:AnEulercircuitexists?Astheresp ectivepathistraversed?eachtimewevisitavertexthereisavertexthroughanedgewecanleavethroughanotheredge?Forthestarting??nishingvertex?thisalsoholds?sincethereisoneedgeweinitiallyleavefromandanotheredge?throughwhichweformthecircle?Thus?wheneverwevisitano deweusetwoedges?whichmeansthatallverticeshaveevendegrees??

:Byinductiononthenumb erofvertices?Inductionb eginning:j

Vj?2?trivial?Inductionbasis:Supp oseforjVj?n

1?Selectanarbitraryvertexu

ttoit?Vertexuhadevendegreesoithasanevennumb erofneighb ors?No

walltheneighb orsofvhaveo dddegreesinceoneadjacentedgeisremoved?Bygroupingtheneighb orsincouplesandaddingoneedgeb etweeneachcouple?weobtainagraphwithnvertices?whereeveryvertexhasevendegree?Thus?thereexistsaneulercircuit?inductionbasis??When

anedge?u?w?addedb etweenneighb orsofvismetwhiletraversingthecircuit?wecanreplaceitbythepath?u?

v???v ? w??Thiswayeveryedgeinthegraphinitialistraversedexactlyonce?sothereexistsaneuleriancircuit?Incasewehavetwoverticeswitho dddegree?wecanaddanedgeb etweenthem?ob?tainingagraphwithnoo dd?degreevertices?Thisgraphhasaneulercircuit?Byremovingtheaddededgefromthecircuit?wehaveapaththatgo esthrougheveryedgeinthegraph?sincethecircuitwaseulerian?Thusthegraphhasaneulerpathandthetheoremisproved?2

?a?Graphwith eulercircuit ?b?Graphwitheulerpath ?c?Graphwithneithereulercir?

FindinganEulerPathThereareseveralwaysto?ndanEulerpathinagivengraph?Sinceitisarelativelysimpleproblemitcanb esolvedintuitivelyresp ectingafewguidelines:1?Alwaysleaveoneedgeavailabletogetbacktothestartingvertex?forcircuits?ortotheothero ddvertex?forpaths?asthelaststep?2?Don?t

arepresentedhere:Fleur y?salgorithm?G?V?E??

1cho osesomevertexu0ofG

2P?u03

considerP?u0 e 1 u1 e2???e i ui andcho oseanedgeei?1withthefollowingprop erties4 ?1?ei?1 joinsui withsomevertexui?1 and5 ?2?theremovalofei?1 do esnotdisconnectthegraphifp ossible6 addei?1 andui?1 inthepath7 removeei?18 ifP?W

9thenreturnP10else

11goto3Thealgorithmfor?ndinganEulerpathinsteadofacircuitisalmostidenticaltotheonejustdescrib ed?Theironlydi?erenceliesinstep1wherewemustcho oseoneofthetwoverticesofo dddegreeastheb eginningvertex?The?nalvertexofthepathwillb etheothero dd?degreevertex?3

Example:Figure10?3demonstratessomeimp ortantstepsinthepro cessdescrib edbythealgorithm?Sinceallverticeshaveo dddegreewearbitrarilystartfromtheupp erleftvertex?Thenumb ernexttoeachedgeindicatesitsorderintheEulercircuit?

?a?Thegraph ?b?Cannotavoidcross?ingabridge ?c?FullpathFigure10?3:Exampleof?eury?s algorithmexecutionEuleriangraphs?haveaveryimp ortantprop erty:Theyconsistofsmallerrings?Rings

arecycleswiththeadditionalrestrictionthatduringthetraversalofthecyclenovertexisvisitedtwice?Letusconsideraneuleriangraph?weknowthateveryvertexhasanevendegree?Anyringpassesthroughexactlytwoedgesadjacenttoanyofitsno des?Thismeansthatifweremovethering?theremainingofthegraphhasstillanevendegreeforallofitsno des?thusremainseulerian?Byrep eatingthispro cedureuntilnoedgesareleftwecanobtainadecomp ositionofaneuleriangraphintorings?Ofcourse?wecandecomp oseaneuleriancycletosmallercycles?notnecessarilyrings?butringshaveahigherpracticalvalue?intermsofnetworks?Thisisofhighimp ortanceinnetworkdesign?wherewewanttokeepanetworkaliveevenwhenanumb eroflinksaredown?Thisprop ertycanalsohelpasbuildtheeuleriancirclewiththeaidofthesmallrings?orcyclesagraphcanb edecomp osedto?Thepro cedurewefollowisdescrib edhereA

constructivealgorithmforbuildingeuleriancircuits?G?V?E??1cho osesomevertexu0 0 ?u0 u1 ???ui u0 andC1 ?v0 v1 ???vj v0

aremergedbytraversingoneofthemandinserttheotherwhenacommonvertexisfound?Theresultisanewcycle?ThecomputationalcomplexityofthisalgorithmisO?E??sinceweonlytraverseedgesuntilweformacycle?Forthemergingpro cedureO?E?timesu?cessinceonceagainwe4

a h gf de cb ?a?Thegraph a h gf de cb 1 5 432
?b?Firstcycle a h gf de cb 1 42
3 ?c?Secondcycle a h gf de cb 1 42
3 ?d?Thirdcycle a h gf de cb 1643
2 5 8 7 ?e?Amalgamatingsec?ondandthirdcycle a h gf de cb 143
2 58
7 6 11 10 9 13 12 ?f?Amalgamatingwiththe?rst

cycle?eulercy?cleFigure10?4:Exampleoftheconstructivealgorithmtraversethesetofedges?Wecaneasilymakethisalgorithm?ndeulerpaths?usingthesametrickasinEuler?stheorem?spro of?Theremustexistexactlytwoverticeswitho dddegree?otherwisenoEulerpathcanb efound?Weaddanedgeb etweenthesetwovertices?computeaneulercircuit?addobtainthepathbyremovingtheaddededge?Example:Figure10?4demonstratesthepro cessdescrib edbythealgorithm?Thereare3di?erentedge?disjointcyclesidenti?ed:a

?b?c?d?e?a?in?g?10?4?b???e?b?d?g

?e?in?g10?4?c??andf?e?h?g?f?in?g10?4?d???Wecanamalgamatethetwolatercyclestoobtainabiggercircle:f?e?b?d?g?e?h?g?f?in?g10?4?e???Thenthiscycleiscombinedwiththe?rstonegivingf?e?b?d?g?e?a?b?c?d?e?h?g?f?whichisanEulercycle??g10?4?f ???10?1?5

ExpansiontodirectedgraphsExpandingtodirectedgraphsisquitestraightforward?Asb efore?itisobviousthatifaneulercircuitexists?duringitstraversal?onemustalwaysvisitandleaveeveryvertex?Thismeansthatthenumb erofedgesleadingtoavertex?in?degree?mustb eequaltothenumb eroftheedgesthatleavethevertex?out?degree??Thistime?theconditionfortheexistenceofapathisslightlydi?erent?sinceforthe?rstvertexofourpathvwehavein

?deg ree?v??out ?deg r ee?v??1andforthelastvertexuin?deg r ee?u??out?deg r ee?u?? 1?Thatis5

b ecausewestartfromthe?rstvertexusinganout?goingedgeand?nishatthe?nalvertexthroughanin?comingedge?Sofordirectedgraphsthefollowingtheoremstands?Theorem10?2AdirectedgraphhasatleastoneEulercirclei?itisconnectedandforeveryvertexuin?de

??out?degree?s??1

?startingvertexofthepath?andin?degree?f??out?degree?f??1??nalvertexofthepath??Theeulercircuitsandpathscanb eobtainedusingthesamealgorithmsasb efore?onlythistimethedirectionofanedgeduringitstraversalmustb etakenintoconsideration?10?1?6

Applications

Euleriangraphsareusedratherextensively?asthey?renecessarytosolveimp ortantproblemsintelecommunication?parallelprogrammingdevelopmentandco ding?Moreo

ver?thecorresp ondingtheoryunderliesinmanyclassicmathematicalproblems?Inthenextsections?weexaminesomeinterestingexamplesLine

Drawings

Thisisamathematicalgame?wheregivenashap e?linedrawing?oneisaskedtore?pro duceitwithoutliftingthep encilorretracingaline?Y

Agraphhasaunicur saltr acingifitcanbetracedwithoutliftingthepencilorretracinganyline?Obviously?acl osedunicur saltr acingofalinedrawingisequivalenttoanEulercircuitinthecorresp ondinggraph?Similarly?anopen

unicur saltr acingequalstoanEulerpath?Thus?weendupwiththefollowingconditions:?

Alinedrawinghasaclosedunicursaltracingi?ithasnop ointsofintersectionofo dddegree?Alinedrawinghasanop enunicursaltracingi?ithasexactlytwop ointsofintersectionofo dddegree??In?gure10?5suchdrawingsapp ear?

?a?op en ?b?op en ?c?closedFigure10?5:Unicursal tracing6

10?1?7Eulerizationandsemi?Eulerization

IncaseswhereanEuleriancircuitorpathdo esnotexist?wemayb estillinterestedin?ndingacircuitorpaththatcrossesalledgeswithasfewretracededgesasp ossible?Eulerizationisasimplepro cessprovidingasolutionforthisproblem?Eulerizationisthepro cessofaddingduplicateedgestothegraphsothattheresultinggraphhasnotanyvertexofo dddegree?andthuscontainsanEulercircuit??Wecandothisbyselectingpairsofverticeswitho dddegreeandduplicatingtheedgesthatformapathb etweenthem?Foranyintermediatevertexweadd?duplicate?twoedgeskeepingitsdegreeevenifitwasevenando ddifitwaso dd?Atthisp ointwemustrecalltheprop ertyofanygraphthatthenumb erofverticeswitho dddegreeiseven?Thismeansthatnoo dd?degreevertexremainsuncoupled?Anexampleofanon?euleriangraphanditseulerizationapp earsin?gure10?6AsimilarproblemrisesforobtainingagraphthathasanEulerpath?Thepro cessinthiscaseiscalledSemi?Eulerizationandisthesameasb eforewiththeonlyadditionthatweaddedgesinsuchawaythattheinitialand?nalverticesofthepathhaveo dddegree?Thismeansthatifthevertexwewantthepathtostartfrom?orendto?hasevendegreewehavetoduplicatesomeedgessothedegreeb ecomeso dd?

?a?anon?euleriangraph

?b?EulerizationofthegraphFigure10?6:Eulerizationpro cessSomeworthmentionedp ointsare:1?Wecannotaddtrulynewedgesduringthepro cessofEulerizingagraph?Alladdededgesmustb eaduplicateofexistingedges?thatis?directlyconnectingtwoalreadyadjacentvertices??2?Duplicateedges?oftencalled?deadheadedges??canb econsideredasnewedgesorasmultipletracingsofthesameedge?dep endingontheproblemsemantics?3?Eulerizationcanb eachievedinmanywaysbyselectingadi?erentsetofedgestoduplicate?Wecandemandthattheselectedsetful?llssomeprop erties?givingbirthtomanyinterestingproblems?suchasaskingfortheminimumnumb erofedgestob eduplicated7

10?2HamiltonpathsandcircuitsAnotherimp ortantproblemhavingtodowithcircuitsandpathsisthesearchforacyclethatpassesthrougheveryvertexexactlyonce?Thismeansthatnotalledgesneedtob etraversed?Suchcycles?andtheresp ectivepaths?thatgothrougheveryvertexexactlyonce?arecalledHamiltoncircuits?pathandgraphsthatcontainhamiltoncircuits?arecharacterizedashamiltonian?De?nition10?4

Ahamiltoniancir cuitisacircuitthatstartingfromavertexu0 passesthroughal lotherverticesui exactlyonceandreturnstothestartingvertex?Ahamil tonianpathsimilarlyisapaththatstartingfromavertexu0

passesthroughal lotherverticesuiexactlyonceandstopsata?nalvertex?Theproblemof?ndingahamiltoncircuitorpath?isanNP?completeproblem?thusitishighlyunexp ectedto?ndap olynomialalgorithmforsolvingit?Thereexisthoweverseveralcriteriathatdeterminewhetheragraphishamiltonianornotforsomefamiliesofgraphs?Unfortunately?globalassumptionsuchashighdensity?oraguaranteedminimumdegreearenotenough?Wecaneasilyconstructanon?Hamiltoniangraphwhoseno des?minimumdegreeexceedsanygivenconstant?Whatifweuseavariableinsteadofaconstant?

ac1952? Everygraphwithn?3verticesandminimumdegreeatleastn?2hasaHamiltoncycle?Proof?LetG?V?E?b eagraphwithjN j?3and??G??n?2?Firstofall?thegraphisconnected?otherwisethedegreeofeveryvertexinthesmallercomp onentC wouldb elessthanjCj?n?2LetP?x 0 ???xk b ealongestpathinG?Thismeansthatallneighb orsofx0 andxk

lieonP?Otherwise?thepathcouldb eincreasedbyaddinganotalreadyincludedneighb or?whichcontradictsthemaximalityofP?Hence?atleastn?2oftheverticesx0

x1 ???xk? 1 areadjacenttoxk andatleastn?2ofthesameverticesxi forwhichxi?1 areneighb orsofx0 thatisadjacenttoxk andforwhichxi?1 isaneigh?b orofx0 ??gure10?7??ThenthecycleC?x0 ?xi?1 ?P?xi?1 :xk ??xi ?P?xi :x0

?formsahamiltoncycle?Thatisb ecausenoverticesexistthatarenotincludedinC?Iftherewasonesuchvertex?itwouldhavetob econnectedtoavertexinCsincethegraphisconnected?ThiswouldleadinalargerpaththanP?whichisacontradictiontoourhyp othesisthatPisalongestpath?Anothertheoremisbasedontheindep endencenumb era?G?ofagraphG?De?nition10?5

AnindependencesetV

0ofagraphG?V ? E?issubsetV

0jVforwhichholds?

Foranytwoverticesu? vofV

0?u? v?isnotanedgeinGDe?nition10?6

Theindependecenumbera?G?ofagraphG?V ? E?isthecardinalityofthelargestindependencesetofG8

XoXiXi+1

Xk PP1 2 3 4

?G??k?G?isthelargestintegerkforwhichGisk?connected?Now?withthede?nitionofindependencenumbergiven?wecanpro ceedandintro ducethetheorem?Theorem10?4Everygraphwithn?3verticesandk?G??a?g?hasaHamiltoncycle?Proof?Letk?G??kandCb ealongestcycleinG?WewillshowbycontradictionthatChastob eahamiltoncycle?soletCnotb eHamilton?First?weenumeratetheverticesinCcyclicallye?g?u

1 u2 ???ulquotesdbs_dbs17.pdfusesText_23
[PDF] hamlet act 1

[PDF] hamlet act 2

[PDF] hamlet passage

[PDF] hamlet pdf with footnotes

[PDF] hamlet website

[PDF] hamlet with explanatory notes

[PDF] hampton inn customer service number

[PDF] hampton waste collection

[PDF] hampton alexander review 2019

[PDF] hand emoji meanings

[PDF] hand sanitizer 10ltr

[PDF] hand sanitizer 5ltr

[PDF] hand sanitizer 80 percent alcohol

[PDF] hand sanitizer brands philippines

[PDF] hand sanitizer brochure pdf