[PDF] Racine carrée - Exercices corrigés





Previous PDF Next PDF



FRACTIONS PUISSANCES

https://www.maths-et-tiques.fr/telech/19RacPuissM.pdf



Racine carrée - Exercices corrigés

RACINE CARREE. EXERCICES CORRIGES. Les carrés parfaits : ( sauf 1 ). 4 9



RACINES CARREES (Partie 2)

On regroupe les membres d'une même « famille de racines carrées » pour réduire l'expression. ( ) ? On applique la double distributivité.



Racines carrées

Quels nombres possèdent une racine carrée ? dont la racine carrée est un nombre entier ? Les exercices d'application ... 5 Distributivité simple.



Radicaux (théorie).pdf

La racine carrée du nombre réel positif a notée a



Cycle 4 - REPÈRES

La racine carrée est utilisée dans le cadre de la résolution de problèmes. distributivité simple est utilisée pour réduire une.



LES RACINES CARRÉES

La racine carrée de -5 est le nombre dont le carré est -5. Méthode : Calculer la racine carrée d'un nombre ... On applique la double distributivité.



Attendus de fin dannée

Il connaît la définition de la racine carrée d'un nombre positif. Il utilise la propriété de distributivité simple pour développer un produit ...



Traduction anglaise des termes mathématiques

29 mar. 2015 carré : square centre : center centre de gravité : centroid ... distributivité : distributivity dividende : ... racine cubique : cube root.



Les nombres

4 sept. 2014 9.2 Distributivité avec les racines carrées . . . . . . . . . . . . . . . . . . 12. 9.3 Comparaison de deux racines carrées .



[PDF] Racine carrée - Exercices corrigés - Collège Le Castillon

RACINE CARREE EXERCICES CORRIGES Les carrés parfaits : ( sauf 1 ) 4 9 16 25 36 49 64 81 100 et la racine carrée de ces carrés 



[PDF] FRACTIONS PUISSANCES RACINES CARRÉES - maths et tiques

Définition : La racine carrée de est le nombre (toujours positif) dont le carré est Racines de carrés parfaits : ?0 = 0 ?25 = 5 ?100 = 10 ?1 = 1 ? 



[PDF] RACINES CARREES (Partie 2) - maths et tiques

Comment simplifier des expressions contenant des sommes et des différences de racines carrées ? Méthode 1 : Ecrire le plus simplement possible : A = B = C = 3 



[PDF] Racines carrées et nombres rationnels

Racines carrées et nombres rationnels Des nombres entiers ?— La racine carrée d'un nombre positif c est le nombre positif x tel que x2 = c; on le note



[PDF] Racine carré 3eme pdf - Squarespace

Racine carré cours et exercices 3eme pdf Les règles de calcul concernant la distributivité la factorisation ou encore les identités remarquables 



[PDF] Racines carrées - Logamathsfr

« La racine carrée du produit est égale au produit des racines carrées » 3 2) Racine carrée et quotient Propriété 3 Soient a et b deux nombres positifs b?0 



[PDF] Racines carrées

La racine carrée d'une somme de deux nombres positifs est-elle égale à la somme des racines carrées de ces deux nombres ? Justifie Les exercices d'application



[PDF] racines carrées

On appelle racine carrée de a le nombre positif dont le carré est égal à a Cette définition se traduit en écritures mathématiques par :



[PDF] 3°4-Maths-chpt 3-les racines carrées

Définition 1: La racine carrée d'un nombre positif x est le nombre positif dont le carré est Exemples: La racine carrée de x se note ?x et on a donc :



[PDF] RADICAUX

Les racines carrées d'un nombre réel positif sont les solutions de l'équation x² = a La multiplication est distributive par rapport à l'addition

  • Comment distribuer une racine carrée ?

    Une racine carrée se distribue sur un produit et inversement, le produit de deux racines carrées est égal à la racine carrée du produit.
  • Comment expliquer la racine carrée ?

    La racine carrée d'un nombre réel positif est l'unique nombre positif qui, lorsqu'il est multiplié avec lui-même, redonne le nombre réel de départ. Par exemple, la racine carrée de 9 est 3 parce que 3 × 3 = 9. On note formellement : ?9 = 3.
  • Quelles sont les propriétés de la racine carrée ?

    Propriété Le produit de 2 racines carrées est égal à la racine carrée du produit. Le quotient de 2 racines carrées ets égale a la racine carrée du quotient.
  • L'équation de la fonction racine carrée peut s'écrire f(x)=a?bx f ( x ) = a b x où a et b sont tous deux non nuls. Remarque : Lorsque a=1 et b=1 , on obtient l'équation f(x)=?x f ( x ) = x qui correspond à la forme de base de la fonction racine carrée.
Racine carrée - Exercices corrigés

Exercice 1:

Simplifier les écritures suivantes :

8 6 + 50 3 - 32 2 = D 54 3 - 24 2 - 6 2 + 96 = C 12 5 + 48 3 - 3 7 = B 125 + 45 - 20 2 = A

Correction :

? 125 45 - 20 2 A+= Simplifions les différentes racines de cette expression.

Nous avons :

5 2 5 2 5 4 5 4 20=´=´=´=

5 3 5 3 5 9 5 9 45=´=´=´=

5 5 5 5 5 25 5 25 125=´=´=´=

Remplaçons, dans l"expression A, ces racines carrées par leurs écritures simplifiées.

Nous avons :

A =

55 5 3 52 2+-´

A =

55 5 3 54+-= ( 4 - 3 + 5 ) 5 = 65 A = 5 6

Remarque : Une autre rédaction est souhaitée. Au lieu de simplifier séparément les différentes racines,

nous pouvons, dans l"expression A, les simplifier simultanément. ? B = 125 48 3 37+-

Nous avons successivement :

B =

3 45 12 4 3 37´+´-

B =

3 45 12 4 3 37´+´-

B =

3 2 5 12 2 3 37´´+´´-

B =

310 12 6 37+-

B =

12 6 317-

Nous devons continuer et simplifier

12 B =

34 6 317´-= 32 6 317´´-= 312 317- = 35

La simplification de 48 a été exécutée en deux étapes. La rédaction pouvait être plus rapide en

constatant que 48 =

3 16´. Nous obtenons alors :

B =

3 4 5 3 163 37´+´-

B =

3 4 5 3 163 37´+´-

B =

3 2 5 3 4 3 37´´+´´-

THEME :

RACINE CARREE

EXERCICES CORRIGES

Les carrés parfaits : ( sauf 1 )

4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100 , ...

et la racine carrée de ces carrés parfaits :

4 = 2 , 9 = 316 = 4 ,25 = 5 ,

36 = 6 , 49 = 7 , ...

B = 310 312 37+-= 35 B = 35

? C = 54324262 96--+

Essayons de déterminer dans chaque radicande ( nombre situé sous le radical ) le carré parfait le plus

grand possible. C =

6 936 4262 6 16´-´-+´

C =

6 936 4262 6 16´-´-+´

C = 63 362 262 64´-´-+

C = 696462 64--+= 67- C = 67-

? D = 86503322+-

D = 2 462 2532 162´+´-´

2 462 2532 162´+´-´

D = 2 2 62 5 32 4 2´´+´´-´´

D = 2122 152 8+- = 25 D = 25

Exercice 2:

Simplifier les expressions suivantes :

) 1 - 2 )( 1 + 2 2 ( - ) 1 - 2 3 ( = E) 5 - 3 ( - ) 5 + 3 ( = D ) 2 - 3 )( 2 + 6 ( = C) 5 + 2 )( 5 - 2 2 ( = B ) 2 - 2 )( 1 - 2 ( = A

222

Correction :

? ) 2 - 2 )( 1 - 2 ( A=

2 1 2 1 - 2 2 - 2 2 A´+´´´= =

2 2 - ² 2( - 22 A+=) mais ² 2() = 2

A =

2 2 - 2 - 22+

23 4 - A+= 23 4 - A+=

? ) 5 2 )( 5 - 22 ( B+=

B 55 - 2 5 - 522 2 22 ´´´+´=

B )²5( - 2 5 - 522 )²22( ´´+= Sachant que ² 2() = 2 , que )²5( = 5 et que 52´= 2 5´= 10 , nous avons : B =

5 - 10 - 102 2 2 +´ 5 - 10 - 102 4 += = 10 1-+ 10 1 - B+=

? ) 2 - 3 )( 2 6 ( C+=

2 2- 3 2 2 6 - 3 6 C´´+´´=

22- 3 2 2 6 - 3 6 C+´´=

22- 3 2 12 - 18 C+=

Simplifions maintenant 18 et 12. Nous avons :

22- 3 2 3 4 - 2 9 C+´´=

22- 3 2 3 4 -2 9 C+´´=

22- 3 2 32 -23 C+== 2 2 C=

Remarque : Il existait ici une autre façon de simplifier cette expression. ) 2 - 3 )( 2 6 ( C+=

Le premier facteur

2 6+ peut s"écrire ( en factorisant ) :

2 6+ = )²2( 3 2+´ = 2 2 3 2´+´ = ) 2 3( 2+´

) 2 - 3 )( 2 6 ( C+== ) 2 - 3 )( 2 3( 2+= )²] 2( )²3[( 2- C =

2] - [3 2 = 2 1 2=´

? )² 5 3 ( - )² 5 3 ( D-+= )²] 5(53 2 )² 3 [( - )²] 5(53 2 )² 3 [( D+´´-+´´+= ] 553 2 3 [ - ] 5 53 2 3 [ D+-++=

En écrivant

53 sous la forme 15 et en supprimant les parenthèses, nous obtenons :

515 2 3 - 5 15 2 3 D-+++= = 15 215 2+= 15 4 15 4 D=

? ) 1 2 )( 1 22 ( - 1)²2 (3 E-+-= ) 1 2 2 2- )²22( ( - 1²] 1 2 3 2)²2 [(3 E-++´´-= ) 1 2 2 2- 2 2 ( - ] 1 2 6)²2 3²( [ E-+´+-= ) 1 2 2 2- 4 ( - 1] 2 62 9 [ E-++-´= ou ) 2 3 ( - ] 2 6[19 E--=

1 2 2 2 4 - 1 2 618 E+-++-= ou 2 3 - 2 619 E+-=

2 516 E-=

Exercice 3:

On donne les nombres :

3 5 2 b et 3 - 5 2 a+==

Calculer a + b , a - b , a² + b² , ab et ( a + b )²

Correction :

? Calcul de a + b : Remplaçons a et b par les valeurs données ci-dessus.

Attention, toute valeur doit être considérée comme une valeur entre parenthèses ( Il est vrai que si

cette valeur est simple, les parenthèses sont omises ) Si a = 2 , il faut lire a = ( 2 ) ( ici les parenthèses sont inutiles )

Si a = - 3 , il faut lire a = ( - 3 )

Si a =

5, il faut lire a = (5 )

Si a =

23 -, il faut lire a = (23 - )

Si a =

352-, il faut lire a = (352- )

a + b = ) 352 ( ) 352 (++- a + b =

352 352++- = 54 a + b = 54

? Calcul de a - b : a - b = ) 352 ( ) 352 (+-- a - b =

352 352--- = - 6 a - b = - 6

? Calcul de a² + b²: a² + b² = )² 352 ( )² 352 (++- a² + b² = ] 3² 512 )² 5(2 [ ] 3² 512 )² 5(2 [++++- ) 1 2 2 2- 4 ( - 1] 2 618 [ E-++-=

2 516 E-=

a² + b² = ] 9 512 )² 52²( [ ] 9 512 )² 52²( [++++- a² + b² = ] 9 512 54 [ ] 9 512 54 [++´++-´ a² + b² = ] 9 512 20 [ ] 9 512 20 [++++- a² + b² = ]512 29 [ ]512 29 [++- = 512 29 512 29++- = 58 a² + b² =

9 512 20 9 512 20++++- = 20 + 9 + 20 + 9 = 58

a² + b² = 58 ? Calcul de ab : ab = ) 352 )( 352 ( b a+-=´ ab = 3² )²52 (- = 3² )²52²(- = 9 5 4-´= 20 - 9 = 11 ab = 11 ? Calcul de ( a + b )² : ( a + b )² = )]² 352 ( ) 352 [(++- ( a + b )² = ]² 352 352 [++- ( a + b )² = ]² 54 [ ( a + b )² = )²54²( = 5 16´ = 80 ( a + b )² = 80 Exercice 4: d"après Brevet des Collèges - Poitiers - 1990

Prouver que

12 5 75 2 - 2 8 +´est un nombre entier . ( le symbole "x" est le

symbole de la multiplication )

Correction :

2 8´ = 16= 4 (d"après la propriété b ab a´=´ qui doit également se lire b a b a´=´)

L"expression à calculer est donc égale à ( nous appellerons A cette expression ) : A =

12 57522 8+-´

A = 3 4 53 25216´+´-

A =

3 4 53 2524´+´-

A = 3 2 53 5 24´´+´´-

A =

3103104+- = 4 A = 4 donc A est un entier

Remarque :

Le premier terme pouvait également être simplifier comme suit :

4 2 2 )² 2 ( 2 224 22 4 28=´=´=´´=´´=´

Exercice 5:

Les côtés d"un triangle IJK ont pour longueurs : IJ = 2 3 + 3 IK = 3 3 - 2 et JK = 2 13

Démontrer que le triangle IJK est rectangle .

Correction :

Recherche du plus grand côté :

A l"aide de la calculatrice , nous constatons que : IJ = »+ 332 6,46 IK »- 2 33 3,19 et JK = »132 7,21 Par conséquent , si le triangle IJK est rectangle , il ne peut être rectangle qu"en I.

Le triangle IJK est-il rectangle en I ?

Nous avons ( calculs séparés ) :

? JK² = 52 13 4 )² 13( 2² )²13(2=´=´= ? IJ² + IK² = )² 2 33 ( )² 3 32 (-++ IJ² + IK² = ] 2² 312 )² 33 [( ] 3² 312 )²32 [(+-+++

IJ² + IK² =

] 4 312 )² 33²( [ ] 9 312 )²32²( [+-+++ IJ² + IK² = ] 4 312 3 9 [ ] 9 312 3 4 [+-´+++´ IJ² + IK² = ] 4 312 27 [ ] 9 312 12 [+-+++ Continuons le calcul dans chaque parenthèse ou supprimons les :

IJ² + IK² =

4 312 27 9 312 12+-+++ = 12 + 9 +27 + 4 = 52

Ces deux calculs permettent d"écrire que :

JK² = IJ² + IK²

Donc, d"après la réciproque du théorème de Pythagore, le triangle IJK est rectangle en I

Exercice 6: Brevet des Collèges - Caen - 1994

Soit l"expression C = x² - 6x + 7

Correction :

? Si x = 5 , nous avons : C =

7 5 6)² 5(+´-

C =

7 5 65+´-= 12 - 6 5 5612 C-=

? Si x = 2 3+ ou (2 3+ ), nous avons :

7 )2 (3 6)²2 (3 C++´-+=

7 )2 (3 6)²] 2 ( 26 3² [ C++´-++=

7 )2 (3 6] 2 26 9 [ C++´-++=

7 2 6 18 2 26 9 C+--++=

2 6 26 7 18 2 9 C-++-+= = 0 C = 0

Exercice 7: Brevet des Collèges - Reims - Septembre 93 Effectuer le calcul suivant en donnant le résultat sous la forme

2 a , a étant un entier

relatif .

50 - )2 ( 3 2 8 - 8 2 B

3+=

Correction :

50)2( 3 2 8 82 B

3-+-=

Si nous regardons l"expression, nous pouvons constater que nous devons simplifier chacun des termes .

8 se simplifie sans problème, ainsi que 50 . La difficulté provient du troisième terme

3)2( 3 .

Aucune propriété liant les racines carrées et l"élévation à la puissance 3 n"est connue. Revenons donc à la

définition de l"élévation au cube.

Nous avons :

2 3 x pour C b)Calculer. relatifs entiers des sont b et a où 5 b a forme la sous résultat le écrire et 5 x pour C a)Calculer+=+=

222 )2(

3´´== 2)²2(´= 22´

Remplaçons donc

3)2( par 22´

Nous avons :

2 2522 3 2 8 2 42 B´-´´+-´=

22522 3 2 8 242 B´-´´+-´=

2522 3 2 8 22 2 B´-´´+-´´=

2526 2 8 24 B-+-=

23 B-= 23 B-=

Exercice 8:Brevet des Collèges - Nice - Montpellier - Toulouse - 1991 Développer et écrire le plus simplement possible : )7 2 3 )( 3 2 2 ( )² 2 5 4 ( D++++=

Correction :

D = )7 2 3 )( 3 2 2 ( )² 2 5 4 (++++

D = ) 21 2 9 2 14 )²2( 6 ( ] )²2 5 ( 2 40 4² [++++++ D = ) 21 2 9 2 14 2 6 ( ] )²2( 5² 2 40 16 [+++´+´++ D = ) 21 2 9 2 14 12 ( ] 2 25 2 40 16 [++++´++ D = ) 21 2 9 2 14 12 ( ] 50 2 40 16 [++++++ D =

21 2 9 2 14 12 50 2 40 16++++++

D =

2 9 2 14 2 40 21 12 50 16++++++ = 2 63 99+ D = 2 63 99+

quotesdbs_dbs33.pdfusesText_39
[PDF] chanson hello goodbye cp

[PDF] productivité du travail calcul

[PDF] hello goodbye beatles cycle 3

[PDF] productivité apparente du travail

[PDF] chanson anglais cycle 3

[PDF] productivité par tête formule

[PDF] productivité du capital calcul

[PDF] productivité du travail formule

[PDF] comment calculer le cout total de la combinaison productive

[PDF] coordination organisationnelle

[PDF] coordination d'une équipe de travail

[PDF] coordination du travail définition

[PDF] supervision directe def

[PDF] mode de coordination définition

[PDF] coordination définition management