[PDF] Lecture notes on Statistical Physics - L3 Physique





Previous PDF Next PDF



Lecture notes on Statistical Physics - L3 Physique

1.1 Context and Goals. This course is an introduction to statistical physics. The aim of statistical physics is to model systems with an.



Lecture Notes on Statistical Mechanics & Thermodynamics

computation; phase transitions; basic quantum statistical mechanics and some advanced topics. The course will use Schroeder's An Introduction to Thermal 



A Course of Lectures on Statistical Mechanics

The lecture notes begin with an introduction to the mathematical background of sta- tistical mechanics. They introduce the all-important notion of entropy 



Lecture Notes on Thermodynamics & Statistical Mechanics

discussing molecules in thermodynamics and statistical mechanics it is also convenient to introduce an internal state energy El



Lecture Notes on Statistical Mechanics and Thermodynamics

Ensembles in Quantum Mechanics (Statistical Operators and Density Ma- theory can be useful and we now introduce some of these



LECTURES ON MATHEMATICAL STATISTICAL MECHANICS S

In these notes we give an introduction to mathematical statistical mechanics based on the six lectures given at the Max Planck institute for Mathematics in.



LECTURE NOTES ON THERMODYNAMICS

14 Feb 2010 Sommerfeld 1956



Lecture Notes on Thermodynamics and Statistical Mechanics (A

10 Dec 2019 Lecture Notes on Thermodynamics and Statistical Mechanics ... 5See 'An Introduction to Information Theory and Entropy' by T. Carter ...



Statistical Physics

Pippard The Elements of Classical Thermodynamics A number of good lecture notes are available on the web. Links can be found on the.



Lecture Notes on Thermodynamics and Statistical Mechanics (A

31 Dec 2020 Lecture Notes on Thermodynamics and Statistical Mechanics ... 5See 'An Introduction to Information Theory and Entropy' by T. Carter ...



[PDF] Lecture Notes on Statistical Mechanics & Thermodynamics

Basic Info This is an advanced undergraduate course on thermodynamics and statistical physics Topics include basics of temperature heat and work; 



[PDF] Lecture notes on Statistical Physics

Chapter 1 Introduction to statistical physics: 'more is different' 1 1 Context and Goals This course is an introduction to statistical physics



[PDF] Lecture Notes on Statistical Mechanics and Thermodynamics

Ensembles in Quantum Mechanics (Statistical Operators and Density Ma- theory can be useful and we now introduce some of these without any attention 



[PDF] lecture notes on statistical mechanics

The notes presume a familiarity with basic undergraduate concepts in statistical mechanics and with some basic concepts from first-year graduate quantum 



Lecture Notes Statistical Mechanics I - MIT OpenCourseWare

This section provides the schedule of course topics along with lecture notes from an earlier version of the course



[PDF] Notes on STATISTICAL MECHANICS

28 août 2017 · Then you will certainly fall in love with both statistical mechanics and thermodynamics separately! • Palash B Pal An Introductory Course 



[PDF] Lecture Notes on Thermodynamics and Statistical Mechanics (A

These lecture notes are intended to supplement a course in statistical An excellent introductory text with a very modern set of topics and exercises



[PDF] A Course of Lectures on Statistical Mechanics - DTIC

versity Adelaide as part of that university's third-year undergraduate course in physics The lecture notes begin with an introduction to the mathematical 



[PDF] Statistical Mechanics Lecture Notes - Morrison Group

Classical physics quantum mechanics and general relativity cover a wide range of physi- cal processes and describe the interactions between particles in a 



[PDF] Lecture Notes Statistical Mechanics (Theory F) - TKM (KIT)

These lecture notes summarize the main content of the course Statistical Me- definition holds that µi is the energy needed to add one particle in 

:

Lecture notes on Statistical Physics

L3 Physique {

Ecole Normale Superieure - PSL

Lyderic Bocquet

lyderic.bocquet@ens.fr https://www.phys.ens.fr/lbocquet/ typeset by Marco Biroli (2019) { beta version as of september 2020, work in progress { 2

Contents

1 Introduction to statistical physics: 'more is dierent' 9

1.1 Context and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

1.2 Statistics and large numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

1.3 Emergent Laws: example of a voting model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

2 Combinatorics and emergent laws. 13

2.1 Perfect Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

2.1.1 Combinatorics of an elementary system without interactions. . . . . . . . . . . . . . . . .

13

2.1.2 Distribution of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

2.1.3 Elements of kinetic theory and law of Boyle-Mariotte. . . . . . . . . . . . . . . . . . . . .

14

2.1.4 Barometric Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2.2 Introduction to the notions of statistical ensembles and fundamental postulate. . . . . . . . . . .

16

2.2.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

2.2.2 Ensembles and postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

3 Microcanonical ensemble.19

3.1 Microcanonical partition function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

3.2 Entropy and Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

3.3 Entropy of the perfect gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

3.4 General Properties of Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

3.4.1 Evolution towards equilibrium: increase of entropy. . . . . . . . . . . . . . . . . . . . . . .

21

3.4.2 Thermodynamic equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

3.4.3 Pressure and chemical potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

3.5.1 Back to the perfect gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

3.5.2 Ideal polymers and entropic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

4 Canonical Ensemble.27

4.1 Principles and canonical probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

4.2 Canonical partition function and Free Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

4.3 Fluctuations and thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

4.4 The perfect gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

4.4.1 Partition Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

4.4.2 Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

4.5 Equipartition and consequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

4.5.1 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

4.5.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

4.5.3 Caloric capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

4.6 Example: classic model of paramagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

5 Grand canonical ensemble. 35

5.1 Principles and grand canonical partition function. . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

5.2 Grand Potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

5.3 Alternative calculation of the grand canonical partition function . . . . . . . . . . . . . . . . . .

37

5.4 Fluctuations and statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

5.5 Alternative Approach (again). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

5.6 The perfect gas in the grand canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

5.7 Example: Adsorption on a surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

5.8 Conclusion on ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41
3

4CONTENTS

6 Ideal systems and entropic forces. 43

6.1 Osmosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

6.2 Depletion forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

6.3 Forces induced by thermal

uctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Statistical ensembles and thermodynamics. 51

7.1 Back to thermodynamic principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

7.1.1 Denitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

7.1.2 Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

7.1.3 Thermodynamic and heat engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

7.2 Thermodynamics and ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

7.2.1 Conclusion on the dierent ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

7.2.2 Maxwell relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

7.2.3 Equilibrium and release of constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

7.3 Stability conditions and

uctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4 Thermodynamics and phase transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

7.4.1 Order parameters and transitions orders. . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

7.4.2 Description of rst order transitions, spinodal and coexistence . . . . . . . . . . . . . . . .

57

7.4.3 Description of second order transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

8 Systems in interaction and phase transitions. 63

8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

8.2 Interactions and partition functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

8.3 Magnetic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

8.3.1 Ising model: exact Results in 1D and 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

8.3.2 Mean eld approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

8.3.3 Mean eld free-energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

8.3.4 Bragg-Williams approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

8.3.5 Landau description of phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

8.4 Lattice models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

8.4.1 Application to a 1D model of capillary condensation. . . . . . . . . . . . . . . . . . . . . .

71

8.5 Dense Liquids and Phase Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

8.5.1 Structures in liquids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

8.5.2 Virial expansion and Van der Waals

uid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.5.3 Liquid-gas phase transition of the van der Waals

uid. . . . . . . . . . . . . . . . . . . . . 76

8.5.4 Thermodynamics of capillary condensation. . . . . . . . . . . . . . . . . . . . . . . . . . .

78

9 Quantum statistics.83

9.1 Quantum states and partition functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

83

9.1.1 Statistical Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

9.2 Two examples: harmonic oscillator and black body radiation . . . . . . . . . . . . . . . . . . . .

84

9.2.1 Harmonic Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

85

9.2.2 Photon gas and black-body radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86

9.3 Bosons and fermions without interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88

9.3.1 Indiscernability and symetrisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88

9.3.2 Grand canonical partition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

9.4 Gas of fermions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92

9.5 Gas of bosons and condensation of Bose-Einstein. . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

9.5.1 Grand potential and pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

9.5.2 Bose Einstein Condensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

10 Appendix: Mathematical memo 97

10.1 Multiplicateurs de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97

10.1.1 Un exemple typique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97

10.1.2 Justication simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97

10.1.3 Interpretation geometrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

10.2 Transformee de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

10.3 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

10.4 Fonctionelles, derivees fonctionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100

10.5 Exemples de resolution d'EDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

101

10.5.1 Resolution d'une equation de Poisson et fonction de Green . . . . . . . . . . . . . . . . .

101

CONTENTS5

10.5.2 Resolution d'une equation de Diusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102

11 Appendix: Mathematica calculations of van der Waals phase transitions 103

6CONTENTS

Bibliography

- Callen, Thermodynamics and an introduction to thermostatistics, Wiley & son - Texier & Roux, Physique Statistique, Dunod - Diu, Guthmann, Lederer, Roulet, Physique statistique, Hermann - Kardar, Statistical physics of particles, Cambridge University Press - Jancovici, Statistical Physics and Thermodynamics, MacGraw-Hill - Landau & Lifschitz, Statistical Physics, Pergamon Press - K. Huang, Statistical mechanics, Wiley - Barrat & Hansen, Basic concepts for simple and complex uids, Cambridge University Press 7

8CONTENTS

Chapter 1

Introduction to statistical physics:

'more is dierent'

1.1 Context and Goals

This course is an introduction to statistical physics. The aim of statistical physics is to model systems with an

extremely large number of degrees of freedom. To give an example, let us imagine that we want to model 1L of

pure water. Let's say that one molecule of water has a typical size of= 3_Aof space. We then have a density

1

331028m3soN=103m3= 31025molecules in 1L

Then to describe each molecule we need 3 spatial coordinates, 3 velocity coordinates and 3 angles. Let's say

that we only care about an approximate position so we divide our volume on each direction in 256 pieces, then

we need 1 byte per coordinate. We do the same thing for speeds and angles. We then need 9 bytes per molecule

to characterize their microscopic state, so in total we need something in the order of 10

15terabytes for one

single conguration. That is a lot of hard drives, just for one conguration. And this is therefore impossible

to capture so much information, in particular if one wants to follow the trajectories of all molecules. One the

other hand, we know that if this liter of water is at 30 Celcius it is liquid, but it is a solid at -10C and a gas at 110 C. Hence we don't really need the complete information about microscopic states to know how

the full system of particle behave, a few variables (temperature, pressure, etc.) are sucient. Therefore, the

objective of this lecture is to show how the macroscopic thermodynamic properties relate to and emerge from

the microscopic description of the group of many interacting particles. To do so, we will perform statistical

averages and apprehend the system in terms of probabilities to observe the various states: this is statistical

physics. Overall, one idea behind the simplications of statistical physics is that uctuations ar small compared to

mean values. Mean behavior emerge from the statistical averages. But as we will highlight several times in

the lectures, there is more than this obvious result when many particles interact. We will show that a group

ofNparticles can behave collectively in a manner which is not 'encoded' trivially in the individual behavior

of each particle, i.e. that groups of individuals have a behavior of their own, which goes beyond the 'DNA'

of each individual. Consider the liquid to ice transition of water: ice and liquid water are constituted by the

very same water molecules, interacting in the same way. So the transition re ects that at low temperature, an

assembly of (many) water molecules preferentially organize into a well structured phase (crystalline), while at

larger temperature they remain strongly disordered phase (liquid). And this huge change is only tuned by a

single parameter (at ambiant pressure): the temperature. This transition re ects that the symmetries of the

collective assembly (forN! 1) 'breaks the underlying symmetries' of the microscopic interactions. Hence

'more is dierent'

1and there are bigger principles at play which we want to uncover.

The contents of the lectures are as follow. We will start by studying on simple examples what are the emerging

laws and how 'more is dierent'. We will then study statistical physics in the framework of ensembles, which

allows calculating thermodynamic potentials and predicting how a system behave as a function of temperature,

pressure, etc. We will introduce and discuss in details the three main ensembles of statistical physics, namely

the micro-canonical, canonical and grand-canonical ensembles. We will also see how we can create mechanical

energy from entropy

2. The course will then explore phase transitions from thermodynamics and we will explore1

This is the title of a seminal paper by PW Anderson in 1972: P. W. Anderson, `More is dierent'Science,177(4047), 393-396

(1972).

2A typical example which we will consider is osmosis: a tank of water with salty water on one side and pure water on the other.

We place a lter in the middle that lets pass only water and not salt, then the entropy of the system will generate a mechanical

force on the barrier. 9

10CHAPTER 1. INTRODUCTION TO STATISTICAL PHYSICS: 'MORE IS DIFFERENT'

exhaustively the model of Van Der Waals for the liquid-vapour phase transition. Finally, we will introduce

quantum statistical physics.

1.2 Statistics and large numbers.

As a rst example, we consider a simple statistical model. We take a volumeVthat we partition inV1andV2,

and we want to know what is the probability of ndingn=N1particles in the 1stvolume. We assume that a particle has a probabilityp=V1V to be inV1andq= 1p=V2V to be inV2. To havenparticles in the rst

volume, we need to realizentimes the previous probability andNntimes its complementary, and since order

does not matter we also get an extra binomial term. In summary, we have :

P(n=N1) = Bin(p=V1V

;n) =N n p n(1p)Nn=N n p nqn As a sanity check, one can verify the following sum rules: N X n=0P(n=N1) =NX n=0Bin(V1V ;n) = (p+ 1p)N= 1 Let us now calculate the average and standard deviation which we compute as follows: hni=NX n=0nP(n=N1) =NX n=0nN n p nqNn=p@@p N X n=0 N n p nqNn=p@@p (p+q)N=Np

The simple mathematical trick in the above equation can be generalized by introducing the generating function:

^p(z) =NX n=0z np(n)

It is easy to show that:

^p(1) = 1 andhnki= z@@z k ^p(z) z=1

From this we can get the standard deviation:

hn2i=z@@z

Which then gives:

n2=hn2i hni2=Npq

This quanties the

uctuations around the mean value. For the large system we are considering, see e.g. the

1026particles contained in 1L of liquid water, we have

nhni=1p10

26= 10131

showing that the uctuations are negligible. Now let us focus on the distribution functionp(n) in the ' thermodynamic limit',N!+1. Since we are dealing with small values pfp(n), we calculate the log ofp(n): log(p(n)) =NlogNNh nlognn+ (Nn)log(Nn)(Nn)i +nlogp+ (Nn)logq

The maximumnof this function is

@@n log(p(n)) n=logn+ log(Nn) + logplogq n= 0,nNn=p1p,n=Np

and we indeed recover the previous value for the mean as the point of maximal probability. We then expand

around this valuenas: log(p(n)) = log(p(n)) +@@n logp(n) n(nn) +12 2@n

2log(p(n))

n(nn)2+ = log(p(n))12Npq(nn)2

1.3. EMERGENT LAWS: EXAMPLE OF A VOTING MODEL.11Np = < n >n =

Npq p n n

496498500502504

0.2 0.4 0.6 0.8

1.0Rewriting this we get that:

p(n) =Aexp

12Npq(nn)2

and normalization givesA=1p2Npq

We see thatp(n) approaches a Gaussian asN!+1.

1.3 Emergent Laws: example of a voting model.As we have announced in the introduction, 'more is dierent' and a collective behavior

may emerge in an assembly of particles, which is not trivially encoded in its microscopic description. As we quoted, this is refered to as a 'symmetry breaking', which may occurs when the number of particles goes to innity,N!+1We will illustrate this concept on the example of a voting model: 'the majority vote model'. We will show that the outcome of a vote does not re ect obviously the voting of individuals when they interact, even only within their close neighbours. We consider a square lattice withNvoters/nodes, illustrated on the gure. To each node we associate a 'vote', which is here described as a parameter that can take two values: i= +1=1. We then make the system evolve by nite time steps twhich can correspond to a day for

example. People are discussing politics among each other (but only with their neighbours) and the evolution

consists of each voter/node having a probability 1qof taking the majoritary opinion of its neighbors and a

probabilityqof taking the minoritary one. Now we dene the following: w i:= probability thatichanges opinionSi:= neighboring opinion = sign(i"+i#+i +i!) We can see case by case [we leave the demonstration as an exercise] that we can rewrite: w i=12 (1(12q)iSi) And note that this formula is also well-behaved forSi= 0.

The question now is: how does the opinion ofievolve ? We know thatiwill stay the same with a probability

1wiand change by a quantity2i(from 1 to -1 or vice-versa) with probabilitywi, so we get:

it= 0(1wi)2iwi=i+ (12q)2iSi=i+ (12q)Si and we deducequotesdbs_dbs11.pdfusesText_17
[PDF] introduction to statistics lecture notes doc

[PDF] introduction to statistics and data analysis pdf

[PDF] introduction to statistics lecture notes ppt

[PDF] introduction to statistics pdf

[PDF] introduction to swift apple

[PDF] introduction to system administration pdf

[PDF] introduction to system and network administration ppt

[PDF] introduction to web technology notes

[PDF] introduction to webrtc

[PDF] introduction to xml and xslt

[PDF] introductory chemical engineering thermodynamics solution manual

[PDF] introductory chemical engineering thermodynamics solutions manual pdf

[PDF] introductory chemical engineering thermodynamics solutions pdf

[PDF] introductory numerical analysis by dutta jana pdf

[PDF] introductory physics 2