[PDF] Chapitre 7 - Trigonométrie et angles orientés





Previous PDF Next PDF



TRIGONOMÉTRIE

En effet : 3?. 4. + 4? = 19?. 4 . II. Mesure d'un angle orienté et mesure principale. 1) Cas d'angles orientés de norme 1.



Vecteurs et colinéarité. Angles orientés et trigonométrie

Feb 21 2017 2. On visualisera les solutions sur le cercle trigonométrique. cos 2x = 1. 2 ? cos 2x = cos ?. 3. Les solutions dans R sont donc ...



Chapitre 7 - Trigonométrie et angles orientés

Trigonométrie et angles orientés. 7.1 Cercle trigonométrique et mesure d'angle. Définition 7.1.1. Un cercle trigonométrique C est un cercle de rayon 1 sur 



Trigonométrie circulaire

2) (?x ? R) cos(x)=?. 1. ?2 & x ?. (3?4 + 2?Z) ? (?3?4 + 2?Z). c Jean-Louis Rouget



TRIGONOMÉTRIE

1ère SPÉCIALITÉ MATHÉMATIQUES. 02 ? TRIGONOMÉTRIE Cosinus sinus et cercle trigonométrique . ... Déterminer la mesure en radian des angles BAC et BCA.



Programme de mathématiques de première générale

L'enseignement de spécialité de mathématiques de la classe de première générale est Les fonctions trigonométriques font l'objet d'une première approche ...



Chapitre 2 – Trigonométrie et angles orientés

Chapitre 2. Trigonométrie et angles orientés. 2.1 Cercle trigonométrique et mesure d'angle. Définition 2.1.1. Un cercle trigonométrique C est un cercle de 



Mathématiques première S

Jun 24 2019 2.6 Lignes trigonométrie dans le cercle . ... Angles remarquables sur le cercle trigonométrique dans l'intervalle ] ? ? ; ?].



Enseignement scientifique

Jun 21 2019 développer des compétences mathématiques de calcul et de ... Géométrie dans le plan : angles alternes-internes



Partie 1 : Cercle trigonométrique et radian

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. TRIGONOMÉTRIE Partie 2 : Mesures d'angles sur le cercle trigonométrique. 1) Exemple :.

Chapitre7

Trigonométrieetanglesorientés

7.1Cerc letrigonométriqueetmesu red'angle

Définition7.1.1.Unce rcletrigonométrique Cestuncer clederay on1surleq uelnousdistingueron s deuxsensdep arcours: •les ensdirectlor squelecercleestparcou rudanslesensinversedesaigui llesd'un emontre; •les ensindirect lorsquelecercleestparcouruda nslesensdesai guillesd'unemontre. Remarque.Lesmes uressuivantesseron tutilesparlasuite:lalong ueurd'uncerclevaut2π,celle dude mi-cerclevautdoncπetcel led'unqua rtdecerclevaut 2 Lecer cletrigono métriquepermetd'introduireunenouvelleunitédemesured'angles:leradian. Définition7.1.2.Lera dian,notérad,estlamesured'unangleaucentrequiinterceptesurle cercleCuna rcdelongue ur1. Remarque.Ilya une rel ationdepr oportionnalitéentrelesd egrése tlesradians.Eneffet,nous savonsquelarela tionsuivan teestvé rifiée

360de gréséquivautà2πrad( lalongueurd ucercletrigonométrique)

C'estpourquo inousavonsletableausuiv ant:

Degrés360d

Radian2πr

Ceta bleaudeproportionnal iténou sfournitlarelationsuivante180×r=d×2πquiper metde convertirdesdegrésenradian etvice-ver sa. Lesv aleursremarquablessui vantessontàconnaitre

Degrés030456090120135150180

Radian0

6 4 3 2 2π 3 3π 4 5π 6 57

58CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

7.2Anglé orientéd'uncoup ledevecteurs

Nousallons voirqu'ilestpossi bled'orienter leplanetd'utiliserlecercletrigo nométri quepour associerlamesured'unangle entrede uxvecteursnonnul s.Aceteffet,soi ent uet vdeuxvect eurs nonnuls. Apartirducentr eOduce rcletrigonométriqueC,ilexistedeuxpointsduplanMetN telsque OM= uet ON= v Depl us,observonsque lesdemi-droites[OM)et[ON)coupentlecercleendespointsAetB.La longueurl,surlecercleC,entrelespointsAetBvape rmettrededéfinirlamesuredel 'angle associéauxvecteurs uet v.

Définition7.2.1.Danslec ontexte précédent,lafamilledes nombresréelsl+2kπ,aveck∈Z,est

unemesur edel'angleorien té( u, v). Remarque.Dema nièreinformelle,lenom brekindiquelenombredet our (ducercletrigonomét rique) quiaété fai t.Enprati que,nousallonss ouvent confondreunangleavecl 'unedesesmes ures.Notons aussiquel'ordre desvecteu rs uet vestimpo rtant.Eneffet,si( u, v)=lalors( v, u)=2π-l.

7.2.1Mesure principaled'unangl eorientédevecteurs

Certainsmesuressontplu ssimplesàutiliserque d'autres. Définition7.2.2.Parmilesmesur esl+2kπ,aveck∈Z,d'unangleorienté( u, v),ilenexiste uneetune seuleap partena ntàl'interva lleI=]-π;π].Cettemesures'appellelamesureprincipale de( u, v). Remarque.Lava leurabsoluedelam esureprincipaled'unang lecoïnci deavecl'anglegéométrique définiparle sdeuxvec teurs uet "toursdecercle»:si( u, v)=lalorstoute slesautresmesuresd ecetangles ontdelaforme l+2kπaveck∈Z

Voyonscequenous obteno nssurdeux exemples.

Exemple7.2.1.1.Su pposonsque(

u, v)= 37
6

πetdét erminonslamesureprincipaledecet

angleorienté. Pourcela,ilsuffitd'observerque

37π

6

6×6+1

6

π=(6+

1 6 6 +3×2π; lame sureprincipaleestdonc 6

2.De manières imilaire,si(

u, v)=

202π

3 nousavons

202π

3

67×3+1

3 3 +67π;
ici,ilfau tpo ursuivreunpeu noscalculsafindefaireapparaitreunmult iplede2πàlaplace de6 7π.Celas'effectuedelama nièresu ivante

67π=68π-π,

7.3.FON CTIONCOSINUSETSINUSD'UNAN GLEORIENTÉ59

ainsi 3 +67π=
3 +68π-π=-
2π 3 +34×2π.Lamesureprincipalevautdonc-
2π 3 etl 'angle géométriqueassociéapourmesure 2π 3 2π 3

7.2.2Proprié tésdesanglesorientés

Voiciquelque spropriétésdesanglesori entés,celles-cis'obtiennentgrâceàducalculvecto riel.

uet vdeuxvecteu rsnonnuls.Alors •direque uet vsontcoliné airesetdemêmesensestéquivalentà( u, v)=0; •direque uet vsontcoliné airesetdesensopposéestéquivalentà( u, v)=π Remarque.Ceré sultatdonneuneautrefaço ndeprouverquetr oispoints sontaligné soudemontrer quedesd roitesson tparallèles. Unerel ationdeChaslesexisteéga lemen tpourlesanglesorientés.

Proposition24(RelationdeChasles).Soient

u, vet wdesvect eursnonnuls,alors u, v)+( v, w)=( u, w) Remarque.Encons équencedecetterelationdeChasles,n ousavo nslesrelationssuivantes: v, u)=-( u, v);( u,- v)=( u, v)+π;(- u, v)=( u, v)+π;(- u,- v)=( u, v) Iles tégalemen timportantd'observerquelas ubstitutiond'unvect eurparunautrevecteur coli- néaire,demêmesens,n'affectepasl emesuredel 'angle orienté.Par exemple (2 u, v)=( u, v);( u,3 v)=( u, v);(2 u,3 v)=( u, v)

7.3Foncti oncosinusetsinusd 'unangleorienté

Pourintro duirecesnouvellesfonctions,il estimport antdeseplacerdansunrepèreorthonormé (O;I;J)direct;si i= OIet j=

OJcecisi gnifieque

i∥=∥ j∥=1et ( i, j)= 2 Définition7.3.1.Dansunt elcadr e,àtoutpo intsMappartenantaucercletrigonomét riq ueCde •nousnotero nsθunemes uredel'angleorie nté( OI, OM); •leco sinusdeθ,notécos(θ),correspondraàl'abscissedupointM; •lesi nusdeθ,notésin(θ),correspondraàl'ordonnéedupointM.

60CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

OO II JJ MM cos(θ) sin(θ) Voyonsquelquesp ropriétésdecesnouvelles fonctions.Toutd'abord,ilestimportantdecalculer quelquesvaleursrema rquablesdecesfonctions .

7.3.FON CTIONCOSINUSETSINUSD'UNAN GLEORIENTÉ61

x y 0 30
60
90
120
150
180
210
240
270
300
330
360
6 4 3 2 2π 3 3π 4 5π 6 7π 6 5π 4 4π 3 3π 2 5π 3 7π 4

11π

6 2π 3 2 1 2 2 2 2 2 1 2 3 2 3 2 1 2 2 2 2 2 1 2 3 2 3 2 1 2 2 2 2 2 1 2 3 2 3 2 1 2 2 2 2 2 1 2 3 2 (-1,0)(1,0) (0,-1) (0,1) Surla figurepréc édente,l'a bscissedechaquepointfournilavaleurducosinusdel'anglecor- respondantetl'ordonnéelavale urdus inus.Parexemple,lepointM( 1 2 3 2 )permetdesavoir que cos 3 1 2 etsi n 3 3 2

62CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

Iles tessentie lderetenirlesvaleurssuivan tes.

θ(enradi ans)0

6 4 3 2 cos(θ)1 3 2 2 2 1 2 0 sin(θ)0 1 2 2 2 3 2 1

Lesau tresvaleurspeuventêt reretrouvéesdemanière élémentaireàl'aided'a rgu mentsgéomé-

triquesquenousallon sdécrire ci-dessous.

7.3.1Propri étésdesfonctionstrigonométriques

Proposition25.Pourtoutx∈Retto utk∈Zlesid entitéssuivantessontsatis faites •cos 2 (x)+sin 2 (x)=1.

Voicilespropr iétésgéom étriquesdontnousparlionsplus tôt.Ile nexist eencored 'autresmais

nousneles abo rderonspasdans cecours.

Proposition26.Pourtoutré elx,nousavons

•(Relationentrelesdeux)sin 2 -x =cos(x)etcos 2 -x =sin(x). Atoutefinutilementionnonségalementlesformulesd'additionssuivant es:

Proposition27.Soienta,bdeuxréelsal ors

7.4Equati onstrigonométriques

Enfin,pourconclu recechapitre ,ilfaudrarésoudredeséq uationsdelaform e cos(x)=uousi n(x)=uavecu∈[-1;1] Autrementdit,lorsqueuestunev aleurdonnée, ilfauttrouverl' ensembledesréelsxsatisfaisant leséqua tionsprécédentes.Pourrés oudre,cecinousavonslerésultatsuivant

7.4.EQUA TIONSTRIGONOMÉTRIQUES63

Remarque.Enprat iquepourrésoudrecos(x)=uilfa udrad'abordtrouvera∈Rtelquec os(a)=u

pourensuit eappliquerlerésultat précédent.Cegenred'équationsseratrèsim portantl'anné e

prochainelorsquevousét udierezlesnombrescompl exes.

64CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

quotesdbs_dbs50.pdfusesText_50
[PDF] Angleterre 6ème Anglais

[PDF] animal embleme de la russie PDF Cours,Exercices ,Examens

[PDF] animal embleme italie PDF Cours,Exercices ,Examens

[PDF] animal farm pdf PDF Cours,Exercices ,Examens

[PDF] animal imaginaire PDF Cours,Exercices ,Examens

[PDF] animal qui marche sur deux pieds PDF Cours,Exercices ,Examens

[PDF] animal religion PDF Cours,Exercices ,Examens

[PDF] animal symbole tunisie PDF Cours,Exercices ,Examens

[PDF] animal symbolique chine PDF Cours,Exercices ,Examens

[PDF] animate 5ème 2016 PDF Cours,Exercices ,Examens

[PDF] animate espagnol 2ème année PDF Cours,Exercices ,Examens

[PDF] animate espagnol 2ème année correction PDF Cours,Exercices ,Examens

[PDF] animate espagnol 2ème année pdf PDF Cours,Exercices ,Examens

[PDF] animate espagnol cycle 4 PDF Cours,Exercices ,Examens

[PDF] animation autour de la laïcité PDF Cours,Exercices ,Examens