[PDF] livre-analyse-1.pdf Les efforts que vous devrez





Previous PDF Next PDF



Tous les exercices dAnalyse MP

TOUS LES EXERCICES. D'ANALYSE MP. Pour assimiler le programme s'entraîner et réussir son concours. El-Haj Laamri. Agrégé en mathématiques et maître de 



Tous les exercices dAlgèbre et de Géométrie MP

TOUS LES EXERCICES. D'ALGÈBRE ET DE GÉOMÉTRIE. MP. Pour assimiler le programme s'entraîner et réussir son concours. Rappels de cours et exercices d' 



Tous les exercices dAnalyse PC-PSI

suivant les programmes (MP-MP* PC-PC* et PSI-PSI*) soient justifiés en Mathé- lnn (voir exercice 2.3 page 9 dans notre livre d'Analyse.



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

Les efforts que vous devrez fournir sont importants : tout d'abord site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices ...



Exercices de mathématiques - Exo7

Donner un exemple de fonctions f et g de R dans R toutes deux non nulles et Démontrer que les applications ?A sont les seuls endomorphismes d'algèbre ...



Precis Analyse MP Bréal–2004 ( Pdf )

Analyse. MP. Cours. Méthodes. D.GUININ • B.JOPPIN. Exercices résolus Tous les exercices ont une solution detaillee ou plus succincte.



livre-analyse-1.pdf

Les efforts que vous devrez fournir sont importants : tout d'abord site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices ...



Exercices danalyse

Exercices d'analyse. David Delaunay. Exercices d'analyse. MPSI résumés de cours méthodes. 3 niveaux d'exercices : • apprentissage. • entraînement.



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Exercice 3.— Justifier toutes les propriétés précédentes. Dans le cas de Rn déterminer l'élément neutre du groupe et l'inverse d'un n-uplet (x1



ANALYSE

COURS DE MATHÉMATIQUES

PREMIÈRE ANNÉEExo7

À la découverte de l"analyseLes mathématiques, vous les avez bien sûr manipulées au lycée. Dans le supérieur, il s"agit d"apprendre à

les construire! La première année pose les bases et introduit les outils dont vous aurez besoin par la suite.

Elle est aussi l"occasion de découvrir la beauté des mathématiques, de l"infiniment grand (les limites) à

l"infiniment petit (le calcul de dérivée).

L"outil central abordé dans ce tome d"analyse, ce sont les fonctions. Vous en connaissez déjà beaucoup,

racine carrée, sinus et cosinus, logarithme, exponentielle... Elles interviennent dès que l"on s"intéresse à

des phénomènes qui varient en fonction de certains paramètres. Position d"une comète en fonction du

temps, variation du volume d"un gaz en fonction de la température et de la pression, nombre de bactérie en

fonction de la nourriture disponible : physique, chimie, biologie ou encore économie, autant de domaines

dans lesquels le formalisme mathématique s"applique et permet de résoudre des problèmes.

Ce tome débute par l"étude des nombres réels, puis des suites. Les chapitres suivants sont consacrés aux

fonctions : limite, continuité, dérivabilité sont des notions essentielles, qui reposent sur des définitions et

des preuves minutieuses. Toutes ces notions ont une interprétation géométrique, qu"on lit sur le graphe de la

fonction, et c"est pourquoi vous trouverez dans ce livre de nombreux dessins pour vous aider à comprendre

l"intuition cachée derrière les énoncés. En fin de volume, deux chapitres explorent les applications des

études de fonctions au tracé de courbes paramétrées et à la résolution d"équations différentielles.

Les efforts que vous devrez fournir sont importants : tout d"abord comprendre le cours, ensuite connaître

par cœur les définitions, les théorèmes, les propositions... sans oublier de travailler les exemples et les

démonstrations, qui permettent de bien assimiler les notions nouvelles et les mécanismes de raisonnement.

Enfin, vous devrez passer autant de temps à pratiquer les mathématiques : il est indispensable de résoudre

activement par vous-même des exercices, sans regarder les solutions! Pour vous aider, vous trouverez sur le

site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés. Alors n"hésitez plus : manipulez, calculez, raisonnez, et dessinez, à vous de jouer!

Sommaire

1 Les nombres réels1

1 L"ensemble des nombres rationnelsQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Propriétés deR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Densité deQdansR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Borne supérieure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Les suites15

1 Définitions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Limites

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Exemples remarquables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Théorème de convergence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Suites récurrentes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Limites et fonctions continues

37

1 Notions de fonction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Limites

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Continuité en un point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Continuité sur un intervalle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Fonctions monotones et bijections

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Fonctions usuelles59

1 Logarithme et exponentielle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Fonctions circulaires inverses

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Fonctions hyperboliques et hyperboliques inverses

. . . . . . . . . . . . . . . . . . . . . . . . 66

5 Dérivée d"une fonction

69

1 Dérivée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2 Calcul des dérivées

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Extremum local, théorème de Rolle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Théorème des accroissements finis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Intégrales85

1 L"intégrale de Riemann

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Propriétés de l"intégrale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Primitive d"une fonction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Intégration par parties - Changement de variable

. . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Intégration des fractions rationnelles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Développements limités109

1 Formules de Taylor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2 Développements limités au voisinage d"un point

. . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Opérations sur les développements limités

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Applications des développements limités

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Courbes paramétrées

127

1 Notions de base

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2 Tangente à une courbe paramétrée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3 Points singuliers - Branches infinies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 Plan d"étude d"une courbe paramétrée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Courbes en polaires : théorie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Courbes en polaires : exemples

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9 Équations différentielles

165

1 Définition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2 Équation différentielle linéaire du premier ordre

. . . . . . . . . . . . . . . . . . . . . . . . . 168

3 Équation différentielle linéaire du second ordre à coefficients constants

. . . . . . . . . . . 174

4 Problèmes conduisant à des équations différentielles

. . . . . . . . . . . . . . . . . . . . . . . 178

10 Leçons de choses185

1 Alphabet grec

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

2 Écrire des mathématiques : L

ATEX en cinq minutes. . . . . . . . . . . . . . . . . . . . . . . . . 186

3 Formules de trigonométrie : sinus, cosinus, tangente

. . . . . . . . . . . . . . . . . . . . . . . 188

4 Formulaire : trigonométrie circulaire et hyperbolique

. . . . . . . . . . . . . . . . . . . . . . 193

5 Formules de développements limités

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Formulaire : primitives

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Index

Les nombres réelsChapitre

1 ?????■?????? ?? ??????? ??Q????R

MotivationVoici une introduction, non seulement à ce chapitre sur les nombres réels, mais aussi aux premiers chapitres

de ce cours d"analyse.

Aux temps des Babyloniens (en Mésopotamie de 3000 à 600 avant J.C.) le système de numération était

en base60, c"est-à-dire que tous les nombres étaient exprimés sous la formea+b60+c60

2+···. On peut

imaginer que pour les applications pratiques c"était largement suffisant (par exemple estimer la surface

d"un champ, le diviser en deux parties égales, calculer le rendement par unité de surface,...). En langage

moderne cela correspond à compter uniquement avec des nombres rationnelsQ.

Les pythagoriciens (vers 500 avant J.C. en Grèce) montrent quep2n"entre pas ce cadre là. C"est-à-dire quep2ne peut s"écrire sous la formepqavecpetqdeux entiers. C"est un double saut conceptuel : d"une part

concevoir quep2 est de nature différente mais surtout d"en donner une démonstration.

Le fil rouge de ce cours va être deux exemples très simples : les nombresp10et1,101/12. Le premier

représente par exemple la diagonale d"un rectangle de base3et de hauteur1; le second correspond par

exemple au taux d"intérêt mensuel d"un taux annuel de10%. Dans ce premier chapitre vous allez apprendre

à montrer quep10n"est pas un nombre rationnel mais aussi à encadrerp10et1,101/12entre deux entiers

consécutifs.

Pour pouvoir calculer des décimales après la virgule, voire des centaines de décimales, nous aurons besoin

d"outils beaucoup plus sophistiqués : une construction solide des nombres réels, l"étude des suites et de leur limites, l"étude des fonctions continues et des fonctions dérivables.

Ces trois points sont liés et permettent de répondre à notre problème, car par exemple nous verrons en

étudiant la fonctionf(x) =x2-10que la suite des rationnels(un)définie paru0=3etun+1=12 u n+10u nŠ

tend très vite versp10. Cela nous permettra de calculer des centaines de décimales dep10et de certifier

qu"elles sont exactes :p10=3,1622776601683793319988935444327185337195551393252168... LES NOMBRES RÉELS1. L"ENSEMBLE DES NOMBRES RATIONNELSQ2

1. L"ensemble des nombres rationnelsQ

1.1. Écriture décimale

Par définition, l"ensemble desnombres rationnelsest

Q=§pq

|p∈Z,q∈N∗ª

On a notéN∗=N\{0}.

Par exemple :

25
;-710 ;36 =12 .Les nombres décimaux, c"est-à-dire les nombres de la formea10 n, aveca∈Zetn∈N, fournissent d"autres exemples :

1,234=1234×10-3=12341000

0,00345=345×10-5=345100000

.Proposition 1.

Un nombre est rationnel si et seulement s"il admet une écriture décimale périodique ou finie.Par exemple :

35
=0,613 =0,3333... 1,179325←→325←→325←→...

Nous n"allons pas donner la démonstration mais le sens direct (=⇒) repose sur la division euclidienne. Pour

la réciproque (⇐=) voyons comment cela marche sur un exemple : Montrons quex=12,342021←-→2021←-→...

est un rationnel.

L"idée est d"abord de faire apparaître la partie périodique juste après la virgule. Ici la période commence

deux chiffres après la virgule, donc on multiplie par 100 :

100x=1234,2021←-→2021←-→... (1)

Maintenant on va décaler tout vers la gauche de la longueur d"une période, donc ici on multiplie encore par

10000 pour décaler de 4 chiffres :

10000×100x=12342021,2021←-→... (2)

Les parties après la virgule des deux lignes(1)et(2)sont les mêmes, donc si on les soustrait en faisant

2 1 ) alors les parties décimales s"annulent :

10000×100x-100x=12342021-1234

donc 999900x=12340787 donc x=12340787999900

Et donc bien sûrx∈Q.

1.2. p2n"est pas un nombre rationnel

Il existe des nombres qui ne sont pas rationnels, lesirrationnels. Les nombres irrationnels apparaissent

naturellement dans les figures géométriques : par exemple la diagonale d"un carré de côté1est le nombre

irrationnelp2; la circonférence d"un cercle de rayon12estπqui est également un nombre irrationnel. Enfin

e=exp(1)est aussi irrationnel. LES NOMBRES RÉELS1. L"ENSEMBLE DES NOMBRES RATIONNELSQ31p2 •1 2π

Nous allons prouver que

p2 n"est pas un nombre rationnel.

Proposition 2.

p2/∈QDémonstration.Par l"absurde supposons quep2soit un nombre rationnel. Alors il existe des entiersp∈Z

etq∈N∗tels quep2=pq, de plus -ce sera important pour la suite- on suppose quepetqsont premiers

entre eux (c"est-à-dire que la fractionpq est sous une écriture irréductible).

En élevant au carré, l"égalitép2=pqdevient2q2=p2. Cette dernière égalité est une égalité d"entiers.

L"entier de gauche est pair, donc on en déduit quep2est pair; en terme de divisibilité 2 divisep2.

Mais si2divisep2alors2divisep(cela se prouve par facilement l"absurde). Donc il existe un entierp′∈Z

tel quep=2p′.

Repartons de l"égalité2q2=p2et remplaçonsppar2p′. Cela donne2q2=4p′2. Doncq2=2p′2. Maintenant

cela entraîne que 2 diviseq2et comme avant alors 2 diviseq.

Nous avons prouvé que2divise à la foispetq. Cela rentre en contradiction avec le fait quepetqsont

premiers entre eux. Notre hypothèse de départ est donc fausse :p2 n"est pas un nombre rationnel.

Comme ce résultat est important en voici une deuxième démonstration, assez différente, mais toujours par

l"absurde. Autre démonstration.Par l"absurde, supposonsp2=pq , doncqp2=p∈N. Considérons l"ensemble

N=n∈N∗|np2∈N.

Cet ensemble n"est pas vide car on vient de voir queqp2=p∈Ndoncq∈ N. AinsiNest une partie non

vide deN, elle admet donc un plus petit élémentn0=minN.

Posons

n

1=n0p2-n0=n0(p2-1),

il découle de cette dernière égalité et de 1Montrer quep10/∈Q.

On représente souvent les nombres réels sur une " droite numérique » :-3-2-1012345πep2

LES NOMBRES RÉELS2. PROPRIÉTÉS DER4Il est bon de connaître les premières décimales de certains réelsp2≃1,4142...π≃3,14159265...

e≃2,718...

Il est souvent pratique de rajouter les deux extrémités à la droite numérique.Définition 1.

R=R∪{-∞,∞}Mini-exercices.

1. Montrer que la somme de deux rationnels est un rationnel. Montrer que le produit de deux rationnels

est un rationnel. Montrer que l"inverse d"un rationnel non nul est un rationnel. Qu"en est-il pour les

irrationnels? 2. Écrire les nombres suivants sous forme d"une fraction : 0, 1212;0, 1212 ←→...; 78,33456456←→... 3.

Sachant

p2/∈Q, montrer 2-3p2/∈Q, 1-1p2 /∈Q. 4.

NotonsDl"ensemble des nombres de la formea2

naveca∈Zetn∈N. Montrer que13 /∈D. Trouver x∈Dtel que 1234Montrer que p2p3 /∈Q. 6.

Montrer quelog2/∈Q(log2est le logarithme décimal de2: c"est le nombre réel tel que10log2=2).2. Propriétés deR

2.1. Addition et multiplication

Ce sont les propriétés que vous avez toujours pratiquées. Poura,b,c∈Ron a : a+b=b+a a×b=b×a

0+a=a1×a=asia̸=0

a+b=0⇐⇒a=-b ab=1⇐⇒a=1b (a+b)+c=a+(b+c) (a×b)×c=a×(b×c) a×(b+c) =a×b+a×c a×b=0⇐⇒(a=0 oub=0) On résume toutes ces propriétés en disant que :Propriété(R1). (R,+,×)est uncorps commutatif.2.2. Ordre surR

Nous allons voir que les réels sont ordonnés. La notion d"ordre est générale et nous allons définir cette

notion sur un ensemble quelconque. Cependant gardez à l"esprit que pour nousE=RetR=⩽.Définition 2.

SoitEun ensemble.

1. UnerelationRsurEest un sous-ensemble de l"ensemble produitE×E. Pour(x,y)∈E×E, on dit quexest en relation avecyet on notexRypour dire que(x,y)∈ R. LES NOMBRES RÉELS2. PROPRIÉTÉS DER52.Une relation Rest unerelation d"ordresi

Restréflexive: pour toutx∈E,xRx,

Restantisymétrique: pour toutx,y∈E,(xRyetyRx) =⇒x=y,

Resttransitive: pour toutx,y,z∈E,(xRyetyRz) =⇒xRz.Définition 3.Une relation d"ordreRsur un ensembleEesttotalesi pour toutx,y∈Eon axRyouyRx. On dit

aussi que(E,R)est unensemble totalement ordonné.Propriété(R2). La relation⩽surRest une relation d"ordre, et de plus, elle est totale.Nous avons donc : pour toutx∈R,x⩽x, pour toutx,y∈R, six⩽yety⩽xalorsx=y, pour toutx,y,z∈Rsix⩽yety⩽zalorsx⩽z.

Remarque.

Pour(x,y)∈R2on a par définition :

x⩽y⇐⇒y-x∈R+ xLes opérations deRsont compatibles avec la relation d"ordre⩽au sens suivant, pour des réelsa,b,c,d:

(a⩽betc⩽d) =⇒a+c⩽b+d (a⩽betc⩾0) =⇒a×c⩽b×c (a⩽betc⩽0) =⇒a×c⩾b×c. On définit le maximum de deux réelsaetbpar : max(a,b) =( asia⩾b bsib>a.

Exercice 2.

Comment définir max(a,b,c), max(a1,a2,...,an)? Et min(a,b)?

2.3. Propriété d"ArchimèdePropriété(R3, Propriété d"Archimède).

Restarchimédien, c"est-à-dire :

∀x∈R∃n∈Nn>x " Pour tout réel x, il existe un entier naturel n strictement plus grand que x. »

Cette propriété peut sembler évidente, elle est pourtant essentielle puisque elle permet de définir la partie

entière d"un nombre réel :Proposition 3.

Soit x∈R, ilexisteununiqueentier relatif, lapartie entièrenotée E(x), tel que :E(x)⩽x

LES NOMBRES RÉELS2. PROPRIÉTÉS DER6

Exemple 1.

E(2,853) =2,E(π) =3,E(-3,5) =-4.

E(x) =3⇐⇒3⩽x<4.

Remarque.

On note aussiE(x) = [x].

Voici le graphe de la fonction partie entièrex7→E(x):xy 1

01y=E(x)2,853E(2,853) =2Pour la démonstration de la proposition3 il y a deux choses à établir : d"abord qu"un tel entier E(x)existe

et ensuite qu"il est unique.

Démonstration.

Existence.Supposonsx⩾0, par la propriété d"Archimède (PropriétéR3) il existen∈Ntel quen>x.

L"ensembleK=k∈N|k⩽xest donc fini (car pour toutkdansK, on a0⩽kxcarkmax+1/∈K. Donckmax⩽xUnicité.Siketℓsont deux entiers relatifs vérifiantk⩽x

donc par transitiviték< ℓ+1. En échangeant les rôles deℓetk, on a aussiℓ

ℓ-1

Le casx<0 est similaire.Exemple 2.

Encadronsp10 et 1,1

1/12par deux entiers consécutifs.

Nous savons32=9<10donc3=p3

2

42=16>10 donc 4=p4

2>p10. Conclusion : 3 =3.

On procède sur le même principe.112<1,10<212donc en passant à la racine12-ième (c"est-à-dire à

la puissance112 ) on obtient : 1<1,11/12<2 et doncE1,11/12=1.

2.4. Valeur absolue

Pour un nombre réelx, on définit lavaleur absoluedexpar :|x|=( xsix⩾0 -xsix<0Voici le graphe de la fonctionx7→ |x|:quotesdbs_dbs22.pdfusesText_28

[PDF] Tous les exercices d Algèbre et de Géométrie MP

[PDF] prépas scientifiques - Dunod

[PDF] les tarifs des offres Livebox-Zen et Livebox-Play - Boutique orangefr

[PDF] DIALOGUE

[PDF] 100 exercices d 'entraînement au théâtre

[PDF] [JSOW]

[PDF] Les bases appliquées de l espagnol - Passerelles: Communication

[PDF] 100 fiches pour comprendre le système éducatif PDF Télécharger

[PDF] 100 jeux de théâtre ? l

[PDF] En français En chiffres Puissance de 10 Préfixe - Mutuamath

[PDF] QCM de selection - IFMT

[PDF] Free Book 100 Recettes De Cosmetiques Maison - Kondeo

[PDF] Examenul de bacalaureat na #355 ional 2016 Proba E d) Biologie

[PDF] 100 Variante BAC Matematica M1 2009

[PDF] Plan d 'accès - BFSO