[PDF] [PDF] Hydration and Hydrolysis with Water Tolerant Lewis Acid Catalysis





Previous PDF Next PDF



Hydration and Hydrolysis with Water Tolerant Lewis Acid Catalysis

6.4 Anisole hydrolysis catalyzed by water-tolerant Lewis acids . when water is contacted with labile moieties such as esters is also well documented.



Mild hydrolysis or alcoholysis of amides. Ti(IV) catalyzed conversion

(lct6-13) to the corresponding carboxylic acids or esters. Also described herein are conditions for The Lewis acids boron trifluoride etherate



Phosphonate Ester Hydrolysis Catalyzed by Two Lanthanum Ions

Lewis-acid catalysis through coordination of the metal ions to of phosphate ester hydrolysis are presented in Chart 2. Clewleg.



The Mechanisms of Acid Catalyzed Ester Hydrolysis Esterification

acid hydrolysis of esters and on the esterification of carboxylic acids we acid catalysis the retardation of esterification in ... Bronsted sense.



Copper(II) complex catalysis of amino acid ester hydrolysis

Abstract: The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(II) complex complexes in the hydrolysis of amino acid esters.



Metal-ion catalysed phosphate diester transesterification

6 mai 2021 Double Lewis-acid activation provides a substantial (ca. 4 X ... metal ions can accelerate the rate of phosphate ester hydrolysis.



Cupric ion catalyzed ester hydrolysis of O-acetyl-2

by acting as Lewis acids.1·2 In the hydrolysis of acyl derivatives. (amides esters



The Hydrolysis of Phosphinates and Phosphonates: A Review

11 mai 2021 Despite the importance of the hydrolysis of P-esters this field has ... hydrolyses can be catalyzed both by mineral and Lewis acids [20].



Asymmetric Synthesis of Dihydropinidine Enabled by Concurrent

23 déc. 2019 The two-step sequence of Lewis acid-catalyzed. Michael reaction and PLE-catalyzed ester hydrolysis followed by acid-promoted decarboxylation ...



Quantitative Evaluation of the Effect of the Hydrophobicity of the

28 déc. 2018 frequency for the hydrolysis of acetate esters with a long alkyl chain ... Lewis and Brønsted acid catalysis in aqueous media.10?16.



[PDF] Hydration and Hydrolysis with Water Tolerant Lewis Acid Catalysis

Researchers studying benzoic acid ester hydrolysis in near-critical water demon- strated autocatalysis with an inflection point in a plot of the conversion of n 



The Mechanisms of Acid Catalyzed Ester Hydrolysis Esterification

and the exchange2 of carboxylic acids The purpose of this paper is to show that by com- bining these data it is possible to eliminate all



[PDF] Lewis Acid Catalysis of Nb2O5 for Reactions of Carboxylic Acid

This model reaction using Nb2O5 as a catalyst could be extended to a general synthesis of amides from esters and amines (Scheme 2) Various amines (anilines as 



[PDF] HYDROLYSIS

catalyzed hydrolysis than the corresponding phosphate esters The table below summarizes the rate constants for a number of important phosphoric acid esters 



[PDF] Lecture 6: Hydrolysis Reactions of Esters and Amides

Acid-Mediated Hydrolysis of Amides This reaction mechanism closely resembles the acid-catalysed hydrolysis of methyl esters Proton transfer steps again 



tion and ester hydrolysis mechanism: acylium ion - RSC Publishing

19 nov 2015 · Correction for 'Acid-catalyzed carboxylic acid esterification and ester hydrolysis + goes through an effective Lewis collision to



[PDF] Ecological catalysis and phytoextraction: Symbiosis for future - HAL

Polymetallic catalyst activity is used in many Lewis acid catalyzed of calcium hydroxide” in favour of hydrolysis of the ester and limiting ?-



Mild hydrolysis or alcoholysis of amides Ti(IV) catalyzed conversion

Reaction of primary amides (e g l a or 6-13) or 0-methylhydroxamates (lb and lc) with a catalytic amount of TiC1 and one equivalent of aqueous HCI converts 



Catalytic hydrolysis of hydrophobic esters on/in water by high-silica

We report herein that a high-silica H? zeolite shows higher activity than conventional homogeneous acid catalysts and the water-tolerant Brønsted [3] and Lewis 

  • Is Lewis acid used in ester hydrolysis?

    Lewis acids can be used to cleave esters in two ways. After Friedel-Crafts type reactions and quenching, this is essentially acid-catalysed hydrolysis –see acids section. Under anhydrous conditions at low or ambient temperatures.
  • What is Lewis acid-catalyzed esterification?

    The Lewis or Brønstedt acid-catalyzed esterification of carboxylic acids with alcohols to give esters is a typical reaction in which the products and reactants are in equilibrium.
  • What is acid-catalyzed hydrolysis of ester?

    Acid-catalyzed hydrolysis of ester is reversible and occurs by SN1 pathway. Acid catalysts speed up the reaction by protonating carbonyl oxygen and thus rendering carbonyl carbon more susceptible to nucleophilic attack.
  • Acidic hydrolysis is simply the reverse of esterification. The ester is heated with a large excess of water containing a strong-acid catalyst. Like esterification, the reaction is reversible and does not go to completion. As a specific example, butyl acetate and water react to form acetic acid and 1-butanol.

Hydration and Hydrolysis with Water Tolerant

Lewis Acid Catalysis in High Temperature Water

by

Natalie A. Rebacz

A dissertation submitted in partial fulllment

of the requirements for the degree of

Doctor of Philosophy

(Chemical Engineering) in The University of Michigan 2011

Doctoral Committee:

Professor Phillip E. Savage, Chair

Professor Johannes W. Schwank

Professor Edwin Vedejs

Emeritus Professor Walter J. Weber Jr.

Associate Professor Suljo Linic

In3+SO

O O -FF F SO OO F FFS OO OF F F In3+H OH H O HH O H

In3+HOH

H O H H OH In3+H O H H OHH OH

©Natalie A. Rebacz 2011All Rights Reserved

to Debe Williams and to WAB ii

ACKNOWLEDGEMENTS

I would rst like to thank all of my mentors during college who inspired me to continue studies in graduate school. These include Dennis Compton, Dotti Miller, Marina Miletic, Debbie Williams, Jerey Weber, and especially Bill Boulanger. I was happy to have had the opportunity to mentor several undergraduate stu- dents: Alex Cohen, Christopher Rausche, Lauren E. Ludlow, Kazi M. Munabbir, and Valerie A. Lee. I learned just as much from them about mentoring as they learned from me about experimental techniques. Alex Cohen contributed greatly to the work in chapters 7 and 5; Chris Rausche, to material in chapters 4 and 5; and Lauren, Kazi, and Valerie, to much of the experimental work in chapter 4. I wish them all success and happiness in their careers. During my research, I also worked closely with Master's student Dongil Kang, who contributed greatly to the experimental work in chapter 6. Dongil performed excellently in the lab, and I greatly enjoyed his calm, genial, and endearing personality. I wish him the best in his endeavors. I greatly enjoyed the friendship of many of my colleagues. It would be impossible to thank them all, but I would like to extend thanks in particular to Tanawan Pinnarat, Ayse Bilge Ozel, and Eranda Nikola for their friendship and support. I thank former Savage group member Craig Comisar for helping me nd my way around lab as a rst-year student. Tanawan Pinnarat and I joined the Savage group together and shared many experiences. We took courses together, attended confer- ences, and pursued fun and enjoyment outside of lab. I greatly appreciate her friend- ship. I wish the best of luck to all of our junior members, and I especially thank iii Chad Huelsman for his good humor and deep appreciation of irony, Peter Valdez for the order he brings to our lab, Jake Dickinson for his ability to x things, and Changi for his good nature. I would like to thank post-doctoral student Tylisha Brown for her encouragement and good discussions. I thank Kent Pruss from the machine shop for his help in xing lab equipment. I thank Harald Eberhart for making a large fraction of the equipment that went into this study. I thank my committee members for their support and criticism over the years. I especially thank Phil Savage for serving as my research advisor. I acknowledge the National Science Foundation (CTS-0625641) for funding this work. I thank all the individuals who developed and documented L

ATEX and gnuplot {

formally or informally { which this work uses extensively. Together, they made a more aesthetic dissertation. Finally, I thank my husband, Andrew Dalton, for his love and support throughout the last several years. iv

TABLE OF CONTENTS

DEDICATION: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :ii ACKNOWLEDGEMENTS: : : : : : : : : : : : : : : : : : : : : : : : : :iii LIST OF FIGURES: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :viii LIST OF TABLES: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :xii LIST OF APPENDICES: : : : : : : : : : : : : : : : : : : : : : : : : : : :xiv LIST OF ABBREVIATIONS: : : : : : : : : : : : : : : : : : : : : : : : :xv ABSTRACT: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :xvii

CHAPTER

I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Properties of Hot Compressed Water . . . . . . . . . . . . . . 5

1.3 Water-tolerant Lewis acids . . . . . . . . . . . . . . . . . . . 9

II. Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Hydrogenation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 CC Bond formation . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Friedel-Crafts alkylation . . . . . . . . . . . . . . . 15

2.2.2 Heck Coupling . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Nazarov cyclization . . . . . . . . . . . . . . . . . . 19

2.3 Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Hydration/Dehydration . . . . . . . . . . . . . . . . . . . . . 27

2.7 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Partial oxidation to form carboxylic acids . . . . . . . . . . . 31

v

2.9 CC Bond cleavage . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 H-D Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Amidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III. Experimental Methods. . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Catalyst solution preparation . . . . . . . . . . . . . . . . . . 37

3.3 Loading reactors . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Unloading reactors and preparing samples . . . . . . . . . . . 42

3.6 Preparation of calibration standards . . . . . . . . . . . . . . 43

3.7 Analytical techniques . . . . . . . . . . . . . . . . . . . . . . 46

3.7.1 Gas chromatograph/mass spectrometry . . . . . . . 46

3.7.2 Gas-chromatography-

ame ionization detection . . . 47

3.7.3 Analyzing the data . . . . . . . . . . . . . . . . . . 48

3.8 Additional experimental procedures . . . . . . . . . . . . . . 50

3.8.1 Particle size determination . . . . . . . . . . . . . . 50

3.8.2 pH measurement . . . . . . . . . . . . . . . . . . . . 51

IV. Hydration of 1-Phenyl-1-Propyne. . . . . . . . . . . . . . . . . 52

4.1 Eect of reactor wall material . . . . . . . . . . . . . . . . . . 54

4.2 Catalyst screening . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Reaction order in In(OTf)

3catalyst . . . . . . . . . . . . . . 59

4.4 Temporal variation of conversion . . . . . . . . . . . . . . . . 61

4.5 Discussion of mechanism . . . . . . . . . . . . . . . . . . . . 63

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

V. Activity Toward Alkyne Hydration. . . . . . . . . . . . . . . . 66

5.1 Aromatic alkynes . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Phenylacetylene . . . . . . . . . . . . . . . . . . . . 67

5.1.2 4-Ethynyltoluene . . . . . . . . . . . . . . . . . . . 68

5.1.3 4-(tert-butyl)-Phenylacetylene . . . . . . . . . . . . 69

5.1.4 4-Ethynylbenzyl alcohol . . . . . . . . . . . . . . . . 70

5.1.5 4-Ethynylbenzonitrile . . . . . . . . . . . . . . . . . 76

5.1.6 Diphenylacetylene . . . . . . . . . . . . . . . . . . . 78

5.2 Aliphatic alkynes . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 5-Decyne . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VI. Anisole Hydrolysis. . . . . . . . . . . . . . . . . . . . . . . . . . 88 vi

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Anisole hydrolysis without added catalyst . . . . . . . . . . . 90

6.3 Conclusions regarding uncatalyzed anisole hydrolysis in HTW 95

6.4 Anisole hydrolysis catalyzed by water-tolerant Lewis acids . . 96

6.4.1 Conclusions regarding anisole hydrolysis with In(OTf)

3catalysis . . . . . . . . . . . . . . . . . . . . . . . . 100

VII. Additional Experiments in Ether Hydrolysis. . . . . . . . . . 103

7.1 Eect of stainless steel or quartz additive . . . . . . . . . . . 103

7.2 Reactivity of analogous substrates . . . . . . . . . . . . . . . 112

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.1 Hammett analysis . . . . . . . . . . . . . . . . . . . 115

7.3.2 Hydrolysis in methanol . . . . . . . . . . . . . . . . 117

7.4 Conclusions and future work . . . . . . . . . . . . . . . . . . 117

VIII. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 APPENDICES: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :122 A. Material Source and Purity . . . . . . . . . . . . . . . . . . . . . . . . 123 B. Detailed Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . 127 B.1 Methods for gas chromatography . . . . . . . . . . . . . . . . 127 B.1.1 Hydration of 1-phenyl-1-propyne to propiophenone . 127 B.2 Preparation of calibration standards . . . . . . . . . . . . . . 127 BIBLIOGRAPHY: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :130 vii

LIST OF FIGURES

Figure1.1 Temperature vs mole fraction of organic in water phase. Circles de- note phase equilibria for benzene; squares, for toluene. Data were collected from [8{11] . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Change in density with temperature for HTW at its saturated con-

dition. [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Change in viscosity with temperature for HTW at its saturated con-

dition. [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Static dielectric constant of saturated liquid water. . . . . . . . . . . 8

1.5 Ion product of saturated liquid water. . . . . . . . . . . . . . . . . . 10

2.1 The most general representation of a Friedel-Crafts alkylation reaction. 15

2.2 Heck coupling of a halobenzene with an alkene. [13] . . . . . . . . . 17

2.3 Researchers studied the Heck coupling of a iodobenzene with cyclo-

hexene with respect to \lling factor" and ionic salts. [55] . . . . . . 18

2.4 Claisen-Schmidt condensation of benzaldehyde with 2-butanone yields

a pair of enones through a respective pair of ketol intermediates. [17] 20

2.5 Condensation of 1,2-phenylenediamine with benzoic acid yields 2-

phenylbenzimidazole. [61] . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Condensation of benzaldehyde with ketones yields;-unsaturated

ketones such as benzalacetone and chalcone. (adapted from [20]) . 21 viii

2.7 A transition state structure consisting of an eight-membered ring

with two hydrogen-bonded water molecules may explain hydrogen evolution. (adapted from [81]) . . . . . . . . . . . . . . . . . . . . . 27

4.1 Yield of propiophenone (left) in stainless steel reactors loaded with

increasing amounts of quartz and (right) in quartz reactors loaded with increasing amounts of stainless steel. Error bars depict 95% condence intervals for the data. . . . . . . . . . . . . . . . . . . . . 55

4.2 Conversion of 1-phenyl-1-propyne to propiophenone after 2 h at 175°C

with 5 mol% catalyst loading based on addition of starting material. 59

4.3 In

quotesdbs_dbs14.pdfusesText_20
[PDF] lewis alcindor jersey

[PDF] lewiston

[PDF] lewiston maine parks and recreation

[PDF] lewiston maine police report

[PDF] lewiston maine youth lacrosse

[PDF] lewiston police department arrests

[PDF] lexique de la poésie

[PDF] lexique des termes juridiques

[PDF] lexique des termes juridiques dalloz 2019 pdf

[PDF] lexique douanier pdf

[PDF] lexique juridique pdf gratuit

[PDF] lf c programming

[PDF] lf in c programming

[PDF] lg air conditioner tonnage calculator

[PDF] lgbt film fest