[PDF] MATH 233 - Linear Algebra I Lecture Notes





Previous PDF Next PDF



Lecture Notes on Discrete Mathematics

Lecture Notes on Discrete Mathematics. July 30 2019 This chapter will be devoted to understanding set theory



MATH 221 FIRST SEMESTER CALCULUS

MATH 221 – 1st SEMESTER CALCULUS. LECTURE NOTES VERSION 2.0 (fall 2009). This is a self contained set of lecture notes for Math 221. The notes were written 



The Maths E-Book of Notes and Examples

The Maths E-Book of. Notes and Examples. In association with. Page 2. Contents. Number. Algebra. Shape Space and Measure. Data Handling and. Probability.



Notes on Discrete Mathematics

08-Jun-2022 Chapter 1. Introduction. This is a course on discrete mathematics as used in Computer Science. It's only a one-semester course ...



Lecture Notes in Discrete Mathematics

Lecture Notes in Discrete Mathematics. Marcel B. Finan Use symbolic connectives to represent the proposition “Juan is a math major.



Lecture Notes on Mathematical Olympiad Courses For Junior

To guide students who are interested in mathematics and have the potential to enter the world of Olympiad mathematics so that their mathematical ability can be 



Math 13 — An Introduction to Abstract Mathematics

02-Dec-2015 These notes are deliberately pitched at a high level relative to this textbook to provide contrast. • Mathematical Reasoning Ted Sundstrom





Lecture notes for Math 840: Multiparameter Persistence

20-Sept-2019 Lecture notes for Math 840: ... I wrote these notes for a one-semester graduate topics course on multi-parameter ... algebra textbook.



LECTURE NOTES ON MATHEMATICAL METHODS

29-Jul-2012 These are lecture notes for AME 60611 Mathematical Methods I the first of a pair of courses on applied mathematics taught in the Department ...



[PDF] The Maths E-Book of Notes and Examples

The Maths E-Book of Notes and Examples In association with Page 2 Contents Number Algebra Shape Space and Measure Data Handling and Probability



[PDF] MATHEMATICS FORM ONE NOTES

Apply numbers in daily life Numbers play an important role in our lives Almost all the things we do involve numbers and Mathematics Whether we like it or 



[PDF] Lecture Notes in Mathematics - PERSONAL PAGES

NE: Hirzebruch Friedrich [Hrsg ]; Lecture notes in mathematics / Subseries: [10] A Connes The von Neumann algebra of a foliation Lecture Notes in



[PDF] Notes on Mathematics - 102

CHAPTER 1 MATRICES Example 1 1 4 The linear system of equations 2x + 3y = 5 and 3x + 2y = 5 can be identified with the matrix [



[PDF] MATH 221 FIRST SEMESTER CALCULUS

This is a self contained set of lecture notes for Math 221 from an extensive collection of notes and problems compiled by Joel Robbin



(PDF) Lecture Notes in Mathematics - ResearchGate

PDF Topological derivative methods are used to solve constrained optimization Lecture Notes in Mathematics ISSN print edition: 0075-8434



Lecture Notes in Mathematics Book series home - Springer

This series reports on new developments in all areas of mathematics and their applications - quickly informally and at a high level



Class 10 Maths Notes - NCERT Solutions PDF

Class 10 Maths Notes PDF Download Free All Chapter's CBSE Revision Notes



[PDF] Foundations of Mathematics MATH 220 Lecture Notes

8 déc 2018 · Chapter 1 Introduction to Mathematical Logic 1 1 Statements and predicates A mathematical proof should not be subject to personal 



JEE Maths Notes PDF Download (Handwritten & Short - SelfStudys

JEE Maths Notes: Here you will get JEE Notes for Maths PDF Format for Free of Cost You can also download JEE Handwritten and Short Notes for Maths to get 

:

MATH 233 - Linear Algebra I

Lecture Notes

Cesar O. Aguilar

Department of Mathematics

SUNY Geneseo

Lecture 0

Contents

1 Systems of Linear Equations1

1.1 What is a system of linear equations?. . . . . . . . . . . . . . . . . . . . . . 1

1.2 Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Solving linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Geometric interpretation of the solution set. . . . . . . . . . . . . . . . . . 8

2 Row Reduction and Echelon Forms11

2.1 Row echelon form (REF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Reduced row echelon form (RREF). . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Existence and uniqueness of solutions. . . . . . . . . . . . . . . . . . . . . . 17

3 Vector Equations19

3.1 Vectors inRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The linear combination problem. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 The span of a set of vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 The Matrix Equation Ax=b31

4.1 Matrix-vector multiplication. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Matrix-vector multiplication and linear combinations. . . . . . . . . . . . . 33

4.3 The matrix equation problem. . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Homogeneous and Nonhomogeneous Systems41

5.1 Homogeneous linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Nonhomogeneous systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Linear Independence49

6.1 Linear independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 The maximum size of a linearly independent set. . . . . . . . . . . . . . . . 53

7 Introduction to Linear Mappings57

7.1 Vector mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Linear mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Matrix mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3

CONTENTS

8 Onto, One-to-One, and Standard Matrix67

8.1 Onto Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 One-to-One Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3 Standard Matrix of a Linear Mapping. . . . . . . . . . . . . . . . . . . . . . 71

9 Matrix Algebra75

9.1 Sums of Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Matrix Multiplication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3 Matrix Transpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Invertible Matrices83

10.1 Inverse of a Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.2 Computing the Inverse of a Matrix. . . . . . . . . . . . . . . . . . . . . . . 85

10.3 Invertible Linear Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11 Determinants89

11.1 Determinants of 2×2 and 3×3 Matrices. . . . . . . . . . . . . . . . . . . . 89

11.2 Determinants ofn×nMatrices. . . . . . . . . . . . . . . . . . . . . . . . . 93

11.3 Triangular Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12 Properties of the Determinant97

12.1 ERO and Determinants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

12.2 Determinants and Invertibility of Matrices. . . . . . . . . . . . . . . . . . . 100

12.3 Properties of the Determinant. . . . . . . . . . . . . . . . . . . . . . . . . . 100

13 Applications of the Determinant103

13.1 The Cofactor Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13.2 Cramer"s Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

13.3 Volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

14 Vector Spaces109

14.1 Vector Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

14.2 Subspaces of Vector Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

15 Linear Maps117

15.1 Linear Maps on Vector Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . 117

15.2 Null space and Column space. . . . . . . . . . . . . . . . . . . . . . . . . . 121

16 Linear Independence, Bases, and Dimension125

16.1 Linear Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

16.2 Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

16.3 Dimension of a Vector Space. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

17 The Rank Theorem133

17.1 The Rank of a Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4

Lecture 0

18 Coordinate Systems137

18.1 Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

18.2 Coordinate Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

18.3 Matrix Representation of a Linear Map. . . . . . . . . . . . . . . . . . . . . 142

19 Change of Basis147

19.1 Review of Coordinate Mappings onRn. . . . . . . . . . . . . . . . . . . . . 147

19.2 Change of Basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

20 Inner Products and Orthogonality153

20.1 Inner Product onRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

20.2 Orthogonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

20.3 Coordinates in an Orthonormal Basis. . . . . . . . . . . . . . . . . . . . . . 158

21 Eigenvalues and Eigenvectors163

21.1 Eigenvectors and Eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . 163

21.2 Whenλ= 0 is an eigenvalue. . . . . . . . . . . . . . . . . . . . . . . . . . . 168

22 The Characteristic Polynomial169

22.1 The Characteristic Polynomial of a Matrix. . . . . . . . . . . . . . . . . . . 169

22.2 Eigenvalues and Similarity Transformations. . . . . . . . . . . . . . . . . . 176

23 Diagonalization179

23.1 Eigenvalues of Triangular Matrices. . . . . . . . . . . . . . . . . . . . . . . 179

23.2 Diagonalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

23.3 Conditions for Diagonalization. . . . . . . . . . . . . . . . . . . . . . . . . . 182

24 Diagonalization of Symmetric Matrices187

24.1 Symmetric Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

24.2 Eigenvectors of Symmetric Matrices. . . . . . . . . . . . . . . . . . . . . . . 188

24.3 Symmetric Matrices are Diagonalizable. . . . . . . . . . . . . . . . . . . . . 188

25 The PageRank Algortihm191

25.1 Search Engine Retrieval Process. . . . . . . . . . . . . . . . . . . . . . . . . 191

25.2 A Description of the PageRank Algorithm. . . . . . . . . . . . . . . . . . . 192

25.3 Computation of the PageRank Vector. . . . . . . . . . . . . . . . . . . . . . 195

26 Discrete Dynamical Systems197

26.1 Discrete Dynamical Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

26.2 Population Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

26.3 Stability of Discrete Dynamical Systems. . . . . . . . . . . . . . . . . . . . 199

5

Lecture 1

Lecture 1

Systems of Linear Equations

In this lecture, we will introduce linear systems and the method of row reduction to solve them. We will introduce matrices as a convenient structure to represent and solve linear systems. Lastly, we will discuss geometric interpretations of the solution set of a linear system in 2- and 3-dimensions.

1.1 What is a system of linear equations?

Definition 1.1:Asystem ofmlinear equationsinnunknown variablesx1,x2,...,xn is a collection ofmequations of the form a

11x1+a12x2+a13x3+···+a1nxn=b1

a

21x1+a22x2+a23x3+···+a2nxn=b2

a

31x1+a32x2+a33x3+···+a3nxn=b3.

a The numbersaijare called thecoefficientsof the linear system; because there aremequa- tions andnunknown variables there are theforem×ncoefficients. The main problem with a linear system is of course to solve it: Problem:Find a list ofnnumbers (s1,s2,...,sn) that satisfy the system of linear equa- tions ( 1.1). In other words, if we substitute the list of numbers (s1,s2,...,sn) for the unknown variables (x1,x2,...,xn) in equation (

1.1) then the left-hand side of theith equation will

equalbi. We call such a list (s1,s2,...,sn)a solutionto the system of equations. Notice that we say "a solution" because there may be more than one. Thesetof all solutions to a linear system is called itssolution set. As an example of a linear system, below is a linear 1

Systems of Linear Equations

system consisting ofm= 2 equations andn= 3 unknowns: x

1-5x2-7x3= 0

5x2+ 11x3= 1

Here is a linear system consisting ofm= 3 equations andn= 2 unknowns: -5x1+x2=-1 πx

1-5x2= 0

63x1-⎷

2x2=-7

And finally, below is a linear system consisting ofm= 4 equations andn= 6 unknowns: -5x1+x3-44x4-55x6=-1 πx

1-5x2-x3+ 4x4-5x5+⎷

5x6= 0

63x1-⎷

2x2-15x3+ ln(3)x4+ 4x5-133x6= 0

63x1-⎷

2x2-15x3-18x4-5x6= 5

Example 1.2.Verify that (1,2,-4) is a solution to the system of equations

2x1+ 2x2+x3= 2

x

1+ 3x2-x3= 11.

Is (1,-1,2) a solution to the system?

Solution.The number of equations ism= 2 and the number of unknowns isn= 3. There arem×n= 6 coefficients:a11= 2,a12= 1,a13= 1,a21= 1,a22= 3, anda23=-1. And b

1= 0 andb2= 11. The list of numbers (1,2,-4) is a solution because

2·(1) + 2(2) + (-4) = 2

(1) + 3·(2)-(-4) = 11

On the other hand, for (1,-1,2) we have that

2(1) + 2(-1) + (2) = 2

but

1 + 3(-1)-2 =-4?= 11.

Thus, (1,-1,2) is not a solution to the system.

A linear system may not have a solution at all. If this is the case, we saythat the linear system isinconsistent: 2

Lecture 1

INCONSISTENT?NO SOLUTION

A linear system is calledconsistentif it has at least one solution:

CONSISTENT?AT LEAST ONE SOLUTION

We will see shortly that a consistent linear system will have either just one solution or infinitely many solutions. For example, a linear system cannot have just 4 or 5 solutions. If it has multiple solutions, then it will have infinitely many solutions. Example 1.3.Show that the linear system does not have a solution. -x1+x2= 3 x

1-x2= 1.

Solution.If we add the two equations we get

0 = 4 which is a contradiction. Therefore, there does not exist a list (s1,s2) that satisfies the system because this would lead to the contradiction 0 = 4. Example 1.4.Lettbe an arbitrary real number and let s 1=-3 2-2t s 2=3 2+t s 3=t. Show that for any choice of the parametert, the list (s1,s2,s3) is a solution to the linear system x

1+x2+x3= 0

x

1+ 3x2-x3= 3.

Solution.Substitute the list (s1,s2,s3) into the left-hand-side of the first equation ?-3

2-2t?+?32+t?+t= 0

and in the second equation ?-3

2-2t?+ 3(32+t)-t=-32+92= 3

Both equations are satisfied for any value oft. Because we can varytarbitrarily, we get an infinite number of solutions parameterized byt. For example, compute the list (s1,s2,s3) fort= 3 and confirm that the resulting list is a solution to the linear system. 3

Systems of Linear Equations

1.2 Matrices

We will usematricesto develop systematic methods to solve linear systems and to study the properties of the solution set of a linear system. Informally speaking, amatrixis an array or table consisting ofrowsandcolumns. For example, A=??

1-2 1 0

0 2-8 8

-4 7 11-5?? is a matrix havingm= 3 rows andn= 4 columns. In general, a matrix withmrows and ncolumns is am×nmatrix and the set of all such matrices will be denoted byMm×n. Hence,Aabove is a 3×4 matrix. The entry ofAin theith row andjth column will be denoted byaij. A matrix containing only one column is called acolumn vectorand a matrix containing only one row is called arow vector. For example, here is a row vector u=?1-3 4? and here is a column vector v=?3 -1? We can associate to a linear system three matrices: (1) the coefficient matrix, (2) the output column vector, and (3) the augmented matrix. For example, for the linear system

5x1-3x2+ 8x3=-1

x

1+ 4x2-6x3= 0

2x2+ 4x3= 3

the coefficient matrixA, the output vectorb, and the augmented matrix [A b] are: A=?? 5-3 8 1 4-6

0 2 4??

,b=?? -1 0 3?? ,[A b] =??

5-3 8-1

1 4-6 0

0 2 4 3??

If a linear system hasmequations andnunknowns then the coefficient matrixAmust be a m×nmatrix, that is,Ahasmrows andncolumns. Using our previously defined notation, we can write this asA?Mm×n. If we are given an augmented matrix, we can write down the associated linear system in an obvious way. For example, the linear system associated to the augmented matrix??1 4-2 8 12

0 1-7 2-4

0 0 5-1 7??

is x

1+ 4x2-2x3+ 8x4= 12

x

2-7x3+ 2x4=-4

5x3-x4= 7.

4

Lecture 1

We can study matrices without interpreting them as coefficient matrices or augmented ma- trices associated to a linear system.Matrix algebrais a fascinating subject with numerous applications in every branch of engineering, medicine, statistics, mathematics, finance, biol- ogy, chemistry, etc.

1.3 Solving linear systems

In algebra, you learned to solve equations by first "simplifying" themusing operations that do not alter the solution set. For example, to solve 2x= 8-2xwe can add to both sides

2xand obtain 4x= 8 and then multiply both sides by1

4yieldingx= 2. We can do

similar operations on a linear system. There are three basic operations, calledelementary operations, that can be performed:

1.Interchange two equations.

2.Multiply an equation by a nonzero constant.

3.Add a multiple of one equation to another.

These operations do not alter the solution set. The idea is to apply these operations itera- tively to simplify the linear system to a point where one can easily write down the solution set. It is convenient to apply elementary operations on the augmented matrix [A b] repre- senting the linear system. In this case, we call the operationselementary row operations, and the process of simplifying the linear system using these operations is calledrow reduc- tion. The goal with row reducing is to transform the original linear system into one having atriangular structureand then performback substitutionto solve the system. This is best explained via an example. Example 1.5.Use back substitution on the augmented matrix??1 0-2-4

0 1-1 0

0 0 1 1??

to solve the associated linear system. Solution.Notice that the augmented matrix has a triangular structure. Thethird row corresponds to the equationx3= 1. The second row corresponds to the equation x

2-x3= 0

and thereforex2=x3= 1. The first row corresponds to the equation x

1-2x3=-4

and therefore x

1=-4 + 2x3=-4 + 2 =-2.

Therefore, the solution is (-2,1,1).

5

Systems of Linear Equations

Example 1.6.Solve the linear system using elementary row operations. -3x1+ 2x2+ 4x3= 12 x

1-2x3=-4

2x1-3x2+ 4x3=-3

Solution.Our goal is to perform elementary row operations to obtain a triangular structure and then use back substitution to solve. The augmented matrix is ?-3 2 4 12

1 0-2-4

2-3 4-3??

Interchange Row 1 (R1) and Row 2 (R2):

?-3 2 4 12

1 0-2-4

2-3 4-3??

R1↔R2----→??

1 0-2-4

-3 2 4 12

2-3 4-3??

As you will see, this first operation will simplify the next step. Add 3R1toR2: ?1 0-2-4 -3 2 4 12

2-3 4-3??

3R1+R2----→??

1 0-2-4

0 2-2 0

2-3 4-3??

Add-2R1toR3:

?1 0-2-4

0 2-2 0

2-3 4-3??

-2R1+R3-----→??

1 0-2-4

0 2-2 0

0-3 8 5??

MultiplyR2by1

2:??1 0-2-4

0 2-2 0

0-3 8 5??

1

2R2--→??

1 0-2-4

0 1-1 0

0-3 8 5??

Add 3R2toR3:??1 0-2-4

0 1-1 0

0-3 8 5??

3R2+R3----→??

1 0-2-4

0 1-1 0

0 0 5 5??

MultiplyR3by1

5:??1 0-2-4

0 1-1 0

0 0 5 5??

1

5R3--→??

1 0-2-4

0 1-1 0

0 0 1 1??

We can continue row reducing but the row reduced augmented matrix is in triangular form. So now use back substitution to solve. The linear system associatedto the row reduced 6

Lecture 1

augmented matrix is x

1-2x3=-4

x

2-x3= 0

x 3= 1 The last equation gives thatx3= 1. From the second equation we obtain thatx2-x3= 0, and thusx2= 1. The first equation then gives thatx1=-4+2(1) =-2. Thus, the solution to the original system is (-2,1,1). You should verify that (-2,1,1) is a solution to the original system. The original augmented matrix of the previous example is M=?? -3 2 4 12

1 0-2-4

2-3 4-3??

→-3x1+ 2x2+ 4x3= 12 x

1-2x3=-4

2x1-3x2+ 4x3=-3.

After row reducing we obtained the row reduced matrix N=??

1 0-2-4

0 1-1 0

0 0 1 1??

→x1-2x3=-4 x

2-x3= 0

x 3= 1. Although the two augmented matricesMandNare clearly distinct, it is a fact that they have the same solution set.quotesdbs_dbs17.pdfusesText_23
[PDF] math workbook pdf grade 1

[PDF] mathcounts 2018 2019

[PDF] mathcounts chapter 2020 solutions

[PDF] mathcounts state

[PDF] mathcounts target round time

[PDF] mathematical analysis 1 pdf

[PDF] mathematical logic exercises

[PDF] mathematical magazine

[PDF] mathematical notations and their meanings pdf

[PDF] mathematical proof examples

[PDF] mathematical proofs course

[PDF] mathematics 2 exeter academy

[PDF] mathematics for computer science eric lehman solutions

[PDF] mathematics for computer science pdf

[PDF] mathematics journals