[PDF] FONCTION EXPONENTIELLE f ' = f f (0) = 1





Previous PDF Next PDF



FONCTION EXPONENTIELLE

f ' = f f (0) = 1 exp(0) = 1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. Remarque : On prouvera dans le paragraphe II. que la 



FONCTION EXPONENTIELLE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. FONCTION EXPONENTIELLE. Tout le cours en vidéo : https://youtu.be/aD03wqgxexk.



FONCTIONS EXPONENTIELLES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS. EXPONENTIELLES. I. Fonction exponentielle de base q. 1) Définition.





FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. FONCTION EXPONENTIELLE ET. FONCTION LOGARITHME. I. Définition de la fonction exponentielle.



exponentielles et logarithmes méthode deuler - olivier debarre

L'exponentielle comme solution d'une équation différentielle On l'appelle la fonction exponentielle. Démonstration. ... e-mail : debarre@math.u-strasbg.fr.



Exponential rates of convergence by an iteration technique

à une convergence de type exponentiel pour la solution de problèmes posés dans des cylindres E-mail addresses: m.m.chipot@math.unizh.ch (M. Chipot) ...



Solving natural conic formulations with Hypatia. jl

09?/07?/2021 jl [Udell et al. 2014]) and Math-. OptInterface's bridges [Legat et al.



Estimation paramétrique

Voici quelques exemples d'estimateurs bâtis sur par cette méthode. 1. Page 2. Estimation paramétrique. 2.1 Loi exponentielle.



Exponential motives Javier Fresán Peter Jossen

02?/08?/2017 D-MATH ETH Zürich



[PDF] FONCTION EXPONENTIELLE - maths et tiques

Définition : On appelle fonction exponentielle l'unique fonction dérivable sur ? telle que et On note cette fonction exp Conséquence : Avec la calculatrice 



[PDF] FONCTIONS EXPONENTIELLES - maths et tiques

La fonction exponentielle de base 12 est définie sur ? par 12x x ? Remarque : Avec la calculatrice il est possible de calculer des valeurs d'une fonction



[PDF] Exponentielle et logarithme

La fonction exponentielle (de base e) et la fonction logarithme (népérien) sont des fonctions réciproques : leurs courbes



[PDF] Les Exponentielles

Définition 1 : On appelle fonction exponentielle la fonction f définie sur R par f(x) est l'unique antécédent y de x par la fonction ln c'est-`a-dire ln(y) 



[PDF] Fonction Exponentielle

Étudier la fonction exponentielle et ses limites Dans ce chapitre in est important de bien connaître les notions de dérivation revues au chapitre précédent 5 



[PDF] LE COURS - FICHE DE RÉVISION DU BAC

FONCTIONS EXPONENTIELLES ET LOGARITHMES exponentielle et logarithme népérien : S ES/L STI2D STL hôtellerie - exponentielles de base a : ES/L ST2S 



[PDF] Exponentielle de matrices

[1] Serre Denis Les matrices [2] Mneimé Testard Introduction à la théorie des groupes de Lie classiques [3] Gourdon Xavier Les Maths en tête [4] Beck 



[PDF] La fonction exponentielle - Lycée dAdultes

24 nov 2015 · On nomme cette fonction exponentielle et on la note : exp ROC Démonstration : L'existence de cette fonction est admise



[PDF] Les fonctions exponentielles Exercices

2019 - 2020 Les fonctions exponentielles Exercices Les propriétés de la fonction exponentielle Exercice 1 Simplifier les expressions suivantes :



[PDF] FONCTION EXPONENTIELLE - Maths91fr

La fonction exponentielle est strictement positive sur R PROPRIÉTÉ Pour tout nombre réel x d'après la relation fonctionnelle on a : exp(x) = 

  • Comment faire un calcul exponentiel ?

    La définition de l'exponentielle est la solution de l'équation f?=f avec f(0)=1 f ( 0 ) = 1 , c'est à dire la fonction qui est sa propre dérivée et qui a pour valeur 1 en 0. La fonction exponentielle se note exp et a par défaut pour base le nombre e?2.71828… (regarder les décimales du nombre e).
  • C'est quoi la fonction exponentielle ?

    Une exponentielle, c'est une fonction mathématique. Comme toutes les fonctions mathématiques, elle décrit une grandeur qui varie dans le temps ou en fonction d'une autre variable. Elle représente quelque chose qui augmente de plus en plus vite.
  • Comment Etudier une fonction exponentiel ?

    Pour étudier cette fonction, on utilise les propriétés de la fonction exponentielle : La fonction dérivée de x?exp(ax+b) est x?aexp(ax+b). car la fonction exponentielle est strictement monotone sur R. car la fonction exponentielle est strictement croissante sur R.
  • Non pas qu'il s'agisse de l'initiale de son nom mais peut être car e est la première lettre du mot exponentielle. La fonction exponentielle, notée exp, est la fonction réciproque du logarithme népérien. Autrement dit : si ln(x) = y alors x = exp(y). Or exp(1) est justement égal à e.
FONCTION EXPONENTIELLE 1

FONCTION EXPONENTIELLE

I. Définition

Théorème : Il existe une unique fonction f dérivable sur ℝ telle que et

Démonstration de l'unicité (exigible BAC) :

L'existence est admise

- Démontrons que f ne s'annule pas sur ℝ.

Soit la fonction h définie sur ℝ par .

Pour tout réel x, on a :

La fonction h est donc constante.

Comme , on a pour tout réel x :.

La fonction f ne peut donc pas s'annuler.

- Supposons qu'il existe une fonction g telle que et .

Comme f ne s'annule pas, on pose .

k est donc une fonction constante.

Or donc pour tout x : .

Et donc . L'unicité de f est donc vérifiée. Définition : On appelle fonction exponentielle l'unique fonction dérivable sur ℝ telle que et .

On note cette fonction exp.

Conséquence :

Avec la calculatrice, il est possible d'observer l'allure de la courbe représentative de la fonction exponentielle : f'=f f(0)=1 h(x)=f(x)f(-x) h'(x)=f'(x)f(-x)+f(x)-f'(-x) =f'(x)f(-x)-f(x)f'(-x) =f(x)f(-x)-f(x)f(-x) =0 h(0)=f(0)f(0)=1 f(x)f(-x)=1 g'=g g(0)=1 k(x)= g(x) f(x) k'(x)= g'(x)f(x)-g(x)f'(x) f(x) 2 g(x)f(x)-g(x)f(x) f(x) 2 =0 k(0)= g(0) f(0) 1 1 =1 k(x)=1 f(x)=g(x) f'=f f(0)=1 exp(0)=1 2 Remarque : On prouvera dans le paragraphe II. que la fonction exponentielle est croissante. Mais sa croissance est très rapide, ainsi exp(21) dépasse le milliard.

II. Etude de la fonction exponentielle

1) Dérivabilité

Propriété : La fonction exponentielle est continue et dérivable sur ℝ et Démonstration : Conséquence immédiate de sa définition

2) Variations

Propriété : La fonction exponentielle est strictement croissante sur ℝ. Démonstration : On a démontré dans le paragraphe I. que la fonction exponentielle ne s'annule jamais.

Or, par définition, donc pour tout x, .

Comme , la fonction exponentielle est strictement croissante.

3) Limites en l'infini

Propriété : et

- Propriété démontrée au paragraphe III. -

4) Courbe représentative

On dresse le tableau de variations de la fonction exponentielle : x 0 expx '=expx exp(0)=1 expx>0 expx '=expx>0 lim x→-∞ expx=0 lim x→+∞ expx=+∞ expx expx 3

III. Propriété de la fonction exponentielle

1) Relation fonctionnelle

Théorème : Pour tous réels x et y, on a : Remarque : Cette formule permet de transformer une somme en produit et réciproquement.

Démonstration :

Comme , on pose avec y un nombre réel.

Pour tout x, on a .

Donc la fonction f est constante.

Comme , on en déduit que .

Corollaires : Pour tous réels x et y, on a :

a) b) c) avec expx+y =expxexpy expx≠0 f(x)= exp(x+y) expx f'(x)= exp(x+y)expx-exp(x+y)expx expx 2 =0 f(0)= exp(y) exp(0) =expy exp(x+y) expx =expy exp-x 1 expx expx-y expx expy expnx =expx n n∈! 4

Démonstration :

a) b) c) La démonstration s'effectue par récurrence.

L'initialisation est triviale.

La démonstration de l'hérédité passe par la décomposition :

2) Le nombre e

Définition : L'image de 1 par la fonction exponentielle est notée e.

On a ainsi

Remarque : Avec la calculatrice, on peut obtenir une valeur approchée de e.

Notation nouvelle :

On note pour tout x réel,

Comme , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique .

Ses premières décimales sont :

e 2,7182818284 5904523536 0287471352 6624977572 4709369995

9574966967 6277240766 3035354759 4571382178 5251664274...

Le nombre e est également un nombre transcendant. On dit qu'un nombre est t ranscendant s'il n'e st solution d'aucune équation à coefficients entiers. Le nombre par exempl e, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation . Un tel nombre est dit "algébrique».

Le premier à s'intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard

Euler (1707 ; 1783), ci-dessus. C'est à lui que nous devons le nom de ce nombre. Non pas qu'il s'agisse de l'initiale de son nom ma is peut être car e est la première lettre du mot exponentiel. expxexp-x =expx-x =exp(0)=1 expx-y =expx+(-y) =expxexp-y =expx 1 expy expx expy expn+1 x =expnx+x =expnx expx=expx n expx=expx n+1 exp1=e expx=exp(x×1)=exp(1) x =e x expx=e x 2 x 2 =2 5 Dans " Introductio in Analysin infinitorum » publié en 1748, Euler explique que : Rappelons que par exemple 5! se l it "factorielle 5" et e st égal à 1 x 2 x 3 x 4 x 5. Par cette formule, il obtient une estimation de e avec 18 décimales exactes. Nous devons aussi à Euler la démonstration de l'irrationalité de e. Avec cette nouvelle notation, on peut ainsi résumer l'ensemble des propriétés de la fonction exponentielle : Propriétés : Pour tous réels x et y, on a : a) et b) et c) , , , , avec . d) et Remarque : On retrouve les propriétés des puissances.

Démonstration de d) (exigible BAC) :

- Soit la fonction g définie par . Pour x positif, car la fonction exponentielle est croissante.

Donc la fonction g est croissante sur .

On dresse ainsi le tableau de variations :

x 0

0 +

1

Comme , on a pour tout x, .

Et donc , soit .

D'après le théorème de comparaison des limites, on en déduit que car

Dériver une fonction exponentielle :

Vidéo https://youtu.be/XcMePHk6Ilk

e=1+ 1 1! 1 2! 1 3! e 0 =1 e 1 =e e x >0 (e x )'=e x e x+y =e x e y e x-y e x e y e -x 1 e x e x n =e nx n∈! lim x→-∞ e x =0 lim x→+∞ e x g(x)=e x -x g'(x)=e x -1≥e 0 -1=0

0;+∞

g'(x) g(x) g(0)=1 g(x)≥1 g(x)=e x -x≥0 e x ≥x lim x→+∞ e x lim x→+∞ x=+∞ lim x→-∞ e x =lim

X→+∞

e -X =lim

X→+∞

1 e X =0 6

Méthode : Simplifier les écritures

Vidéo https://youtu.be/qDFjeFyA_OY

Simplifier l'écriture des nombres suivants :

Propriétés : Pour tous réels a et b, on a : a) b) Méthode : Résoudre une équation ou une inéquation

Vidéo https://youtu.be/dA73-HT-I_Y

Vidéo https://youtu.be/d28Fb-zBe4Y

a) Résoudre dans ℝ l'équation . b) Résoudre dans ℝ l'inéquation . a)

Les solutions sont -3 et 1.

b) A= e 7 ×e -4 e -5 B=e 5 -6 ×e -3 C= 1 e -3 2 e 4 -1 e 2 ×e -6 A= e 7 ×e -4 e -5 e 7-4 e -5 e 3 e -5 =e

3-(-5)

=e 8 B=e 5 -6 ×e -3 =e

5×(-6)

×e -3 =e -30 ×e -3 =e -30-3 =e -33 C= 1 e -3 2 e 4 -1 e 2 ×e -6 1 e -3×2 equotesdbs_dbs33.pdfusesText_39
[PDF] modèle analytique psychologie

[PDF] modélisation analytique définition

[PDF] moi boy roald dahl questionnaire

[PDF] la modélisation mathématique

[PDF] moi boy roald dahl extrait

[PDF] matisse au maroc

[PDF] diagramme de flux de données exercices corrigés

[PDF] delacroix carnet de voyage maroc

[PDF] compte rendu de voyage scolaire

[PDF] delacroix carnets de voyage au maroc

[PDF] exploitation robinson crusoe cycle 3

[PDF] fiche de lecture roméo et juliette shakespeare

[PDF] avoir conjugaison espagnol

[PDF] verbe etre en espagnol

[PDF] sa majesté des mouches personnages