[PDF] Fonctions à deux variables



Previous PDF Next PDF
















[PDF] limite d'une fonction ? deux variables

[PDF] dérivée d'une fonction ? plusieurs variables

[PDF] fonctions ? plusieurs variables exercices corrigés

[PDF] faire une étude de marché gratuite

[PDF] exemple étude de marché pour création d'entreprise

[PDF] exemple d'étude de marché pdf

[PDF] faire une étude de marché pour créer son entrepris

[PDF] étude de marché gratuite en ligne

[PDF] etude de marché d'un projet exemple

[PDF] importance de la fonction achat dans l'entreprise

[PDF] historique de la fonction achat

[PDF] le processus d'achat pdf

[PDF] le processus achat

[PDF] installation sanitaire

[PDF] support d'installation windows 10

Fonctions de plusieurs variables

November 1, 2004

1 Diff´erentiabilit´e

1.1 Motivation

Pour une fonction d"une variablef, d´efinie au voisinage de 0, ˆetre d´erivable en 0, c"est admettre

un d´eveloppement limit´e `a l"ordre 1, f(x) =b+ax+x?(x).

Alorsb=f(0) eta=f?(0).

Interpr´etation g´eom´etrique. La courbe repr´esentative defposs`ede en (0,a) une tangente, la

droite d"´equationy=b+ax.

On veut faire pareil pour une fonction de deux variables. La courbe repr´esentative est remplac´ee

par une surface repr´esentative d"´equationz=f(x,y), la droite tangente par un plan tangent d"´equationz=c+ax+by. La tangence s"exprime en disant que la distance entre le point (x,y,f(x,y)) de la surface et le point (x,y,c+ax+by) du plan est petite devant la distance de (x,y) `a l"origine.

Exemple 1.1f(x,y) =x2+y2.

1.2 Diff´erentiabilit´e d"une fonction de deux variables

D´efinition 1.2Soitfune fonction de deux variables, d´efinie au voisinage de(0,0). On dit quef

estdiff´erentiableen(0,0)si elle admet und´eveloppement limit´e `a l"ordre 1, i.e. si on peut ´ecrire

f(x,y) =c+ax+by+?x

2+y2?(x,y),

o`u?(x,y)tend vers 0 lorsquexetytendent vers 0. Dans ce cas,fadmet des d´eriv´ees partielles en (0,0), et c=f(0,0), a=∂f∂x (0,0),∂f∂y (0,0).

La diff´erentiabilit´e defen un point quelconque(x0,y0)se traduit par le d´eveloppement limit´e

f(x0+u,y0+v) =f(x0,y0) +∂f∂x (x0,y0)u+∂f∂y (x0,y0)v+?u

2+v2?(u,v),

o`u?(u,v)tend vers 0 lorsqueuetvtendent vers 0. Exemple 1.3f(x,y) =x(2-x+y) +y(1-x-y)est diff´erentiable `a l"origine.

En effet,

f(x,y) = 2x+y-x2-y2 = 2x+y+?x

2+y2?(x,y),

1 o`u ?(x,y) =-?x 2+y2 tend vers 0 quandxetytendent vers 0.

Th´eor`eme 1Soitfune fonction de deux variables d´efinie au voisinage de(0,0). Si les d´eriv´ees

partielles ∂f∂x et∂f∂y sont d´efinies au voisinage de(0,0)et continues en(0,0), alorsfest diff´erentiable en(0,0), et son d´eveloppement limit´e `a l"ordre 1 s"´ecrit f(x,y) =f(0,0) +∂f∂x (0,0)x+∂f∂y (0,0)y+?x

2+y2?(x,y).

Exemple 1.4f(x,y) =x(2-x+y) +y(1-x-y)est diff´erentiable en tout point. En effet, on n"a qu"a utiliser le th´eor`eme 1. On peut aussi calculer directement f(x0+u,y0+v) = 2x0+ 2u+y0+v-x20-2x0u-u2-y20-2y0v-v2 = 2x0+y0-x20-y20+ (2-2x0)u+ (1-2y0)v-u2-v2 = 2x0+y0-x20-y20+ (2-2x0)u+ (1-2y0)v+?u

2+v2?(u,v).

1.3 Gradient

D´efinition 1.5Soitfune fonction de deux variables, diff´erentiable tout point d"un domaineD. Songradientest le champ de vecteurs d´efini surDpar ?f: (x,y)?→? ∂f∂x (x,y) ∂f∂y (x,y)? Exemple 1.6Le gradient de la fonction d´efinie surR2parf(x,y) =x2est le champ de vecteurs horizontal?(x,y)f=?2x 0?

1.4 Interpr´etation du d´eveloppement limit´e

Proposition 1.7Sifest diff´erentiable enP, alors pour toute droitet?→P+tvpassant parP, la fonctiont?→f(P+tv)est d´erivable, et ddt f(P+tv)|t=0=?Pf·v. On verra plus loin (th´eor`eme 2) que cette formule est vraie pour toute courbe, et non seulement les droites, sous la forme ddt f(c(t)) =?c(t)f·c?(t).

1.5 Lignes de niveau

D´efinition 1.8On appellelignes de niveaudefles ensembles de la formeLw={(x,y);f(x,y) = w}. Exemple 1.9Les lignes de niveau de la fonctionf(x,y) =x2+y2sont des cercles concentriques. Celles de la fonctionf(x,y) =xysont des hyperboles, `a l"exception de la ligne de niveau 0, qui est la r´eunion de deux droites. 2 Proposition 1.10Le gradient d"une fonction est un vecteur perpendiculaire aux lignes de niveau, pointant dans la direction dans laquelle la fonction augmente. Sa longueur est d"autant plus grande

que la fonction varie rapidement, i.e. que les lignes de niveau sont rapproch´ees. Le gradient indique

la direction de plus grande pente. Preuve.Soitt?→c(t) une ligne de niveau. Alorst?→f(c(t)) est constante, donc 0 = ddt f(c(t)) =?c(t)f·c?(t), ce qui montre que le gradient est orthogonal `a la tangente `a la ligne de niveau. Lorsque l"on se d´eplace dans la direction du gradient, par exemple, part?→c(t) =P+t?Pf, ddt f(c(t))|t=0=?Pf·c?(0) =? ?Pf?2>0, doncfaugmente, d"autant plus vite que? ?Pf?est grand.

Soitvun vecteur unitaire. Alors

ddt f(P+tv)|t=0=?Pf·v est maximum lorsquevest colin´eaire et de mˆeme sens que?Pf, donc?Pfindique la direction de plus grande pente.1.6 G´en´eralisation

De la mˆeme fa¸con, on peut parler de d´eveloppement limit´e et de diff´erentiabilit´e pour une fonction

denvariables (remplacer?x

2+y2par?x

21+···+x2n), puis pour une applicationRn→Rp.

Dans ce cas, les coefficients du d´eveloppement limit´e sont des vecteurs deRp. Exemple 1.11SoitIun intervalle deRetc:I→R2une courbe. Calculer un d´eveloppement

limit´e decen 0, c"est calculer des d´eveloppements limit´es des fonctions coordonn´eesx(t) =a0+

a

1t+t?(t),y(t) =b0+b1t+t?(t), et former le d´eveloppement limit´e vectoriel

c(t) =?a0 b 0? +t?a1 b 1? +t?(t). Proposition 1.12Une applicationF= (f1,...,fp) :Rn→Rpest diff´erentiable si et seulement si chacune de ses composantes l"est.

1.7 La diff´erentielle

D´efinition 1.13SoitF:= (f1,...,fp) :Rn→Rpune application diff´erentiable enP. Sa diff´erentielleenPest l"application lin´eaire deRndansRpqui apparaˆıt comme le terme non

constant du d´eveloppement limit´e `a l"ordre 1 enP. Sa matrice, appel´eematrice jacobienne, a pour

coefficients les d´eriv´ees partielles, J f(P) =( ((∂f

1∂x

1...∂f1∂x

n...... ∂f p∂x

1...∂fp∂x

n) Exemple 1.14SiAest une matrice, alors l"application lin´eairefA:Rn→Rpqu"elle d´efinit est diff´erentiable, et sa matrice jacobienne estAen n"importe quel point. Exemple 1.15Soitf(x,y) = 2x+y-x2-y2. Sa matrice jacobienne est ?2-2x1-2y?. 3 Autrement dit, la matrice jacobienne d"une fonction, c"est son gradient vu comme un vecteur ligne.

Exemple 1.16SoitF(t) =?cos(t)

sin(t)? . Sa matrice jacobienne est?-sin(t) cos(t)?

Autrement dit, la matrice jacobienne d"une courbe, c"est sa d´eriv´ee vue comme un vecteur colonne.

Exemple 1.17SoitF(r,θ) = (rcos(θ),rsin(θ)). Sa matrice jacobienne est ?cos(θ)-rsin(θ) sin(θ)rcos(θ)?

1.8 Matrice jacobienne d"une fonction compos´ee

quotesdbs_dbs4.pdfusesText_7