[PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La



Previous PDF Next PDF
















[PDF] fonctions ? plusieurs variables exercices corrigés

[PDF] faire une étude de marché gratuite

[PDF] exemple étude de marché pour création d'entreprise

[PDF] exemple d'étude de marché pdf

[PDF] faire une étude de marché pour créer son entrepris

[PDF] étude de marché gratuite en ligne

[PDF] etude de marché d'un projet exemple

[PDF] importance de la fonction achat dans l'entreprise

[PDF] historique de la fonction achat

[PDF] le processus d'achat pdf

[PDF] le processus achat

[PDF] installation sanitaire

[PDF] support d'installation windows 10

[PDF] cd d'installation windows 7 gratuit

[PDF] installation windows 10 usb

Dérivées des fonctions de plusieurs variables (suite) 1 La

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Dérivées des fonctions de plusieurs variables (suite)

1 La différentielle d"une fonction à valeurs réelles

Cas des fonctions d"une variable

(i)fest dérivable enX0silimh!0f(X0+h)f(X0)h existe.

Sa valeur`est notéef0(X0).

(ii) On p eut,de manière équiv alente,écrire limh!0f(X0+h)f(X0)`hh = 0. On remarque queh!L(h) =`hest une application linéaire deRdansR, que l"on appelledifférentielledefenX0et que l"on notedf(X0). (iii) Si fest dérivable enX0, alors pourhpetit :f(X0+h)est "voisin" def(X0)+f0(X0)h. Donch!f(X0) +f0(X0)hest une application affine qui "approche très bien " f(X0+h).

Définition

1.1. fest différentiable enxs"il existe une application linéaireL:Rn!R

telle que : f(x+h) =f(x) +L(h) +khk(h); aveclimh!0(h) = 0. L"applicationLestla différentielle defenxet se notedf(x) ouf0(x).

Remarque

Cette définition signifie que l"application affinef(x)+df(x)hest tangente à l"application h7!f(x+h)en 0. Lorsque qu"on remplacef(x+h)parf(x) +df(x)het quehest petit, alors on fait une erreur négligeable par rapport àh.

Cela revient à dire

lim khk!0f(x+h)f(x)L(h)khk= 0 La différentielle, lorsqu"elle existe, est unique.

Proposition

1.2. Sifest différentiable enx, alors ses dérivées partielles existent et on

a : df(x)h=@ f@ x

1(x)h1+:::+@ f@ x

n(x)hn =rfh

Remarque

La matrice de l"application linéairedf(x)dans la base canonique est le gradientrf(x). 1

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Proposition

1.3. Sifest différentiable enxalorsfest continue enx.

Remarque

L"existence des dérivées partielles defn"implique pas la différentiabilité.

Mais :

Théorème

1.4. Sifadmet des dérivées partielles et si elles sont continues alorsfest

différentiable.

On dit quefest de classeC1.

1.1 Règle de différentiation

Proposition

1.5. Sifetgsont différentiables on a :

(i)d(f+g)(x) =df(x) +dg(x) (ii)d(f)(x) =df(x) (iii)d(fg)(x) =f(x)dg(x) +g(x)df(x) (iv)dfg (x) =g(x)df(x)f(x)dg(x)g

2(x)(à condition queg(x)6= 0)

1.2 Remarques

Sif:U!RoùUest un ouvert deRn, alors :

(i) Si festC1surUalorsfest différentiable surUet les dérivées@ f@ x iexistent surU.

Les réciproques ne sont pas vraies!!

(ii) Si fest différentiable enx02Ualors l"application affineA(h) =f(x0) +df(x0)h a pour graphe l"espace tangent au graphe defenx0.

1.3 Dérivées partielles successives

Les dérivées partielles

@f@x i(x1;:::;xn)sont des fonctions dex1;:::;xn, et il arrive souvent qu"elles sont eux-même dérivables.

Définition

1.6. On écrit, lorsqu"elle existe,@2f@x

i@xj=@@x i @f@x j et on dit qu"il s"agit d"unedérivée partielle secondedef.

Exemple

f:R2!R;(x;y)7!x3y4. Alors@2f@x@y (x;y) = 12x2y3=@2f@y@x (x;y). 2

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Théorème

1.7. (Schwarz)

Si les déirvées partielles

@f@x i;@2f@x i@xjexistent et sont continues dans une boule autour de(a1:::an)alors : 2f@x i@xj(a) =@2f@x j@xi(a)

2 La différentielle d"une fonction à valeurs vectorielles

Définition

2.1. FdeRndansRmestdifférentiableenx2Rns"il existe uneappli-

cation linéaireLdeRndansRmtelle que : lim khk!0F(x+h)F(x)Lhkhk= 0:

Lest ladifférentielledeFenxet se note :dF(x).

Théorème

2.2. Fest différentiable enxsi et seulement si ses composants sont différen-

tiables et on a : dF(x)h= (rf1(x)h; ::: ;rfm(x)h):

Définition

2.3. La matrice

2 6 4@f 1@x

1(x)@f1@x

n(x) @f m@x

1(x)@fm@x

n(x)3 7 5 est la matrice dedF(x)et est appeléematrice jacobiennedeFenxet se note :J(F)(x).

Théorème

2.4. SiFa des composantes de classeC1alors elles sont différentiables etF

est également différentiable.

Exercice

(i) T rouverla matrice jaco biennede Fen(1;1)de :F(x; y) = (x2+y2; exy). (ii) T rouverla différen tiellede F(x; y ; z) = (x; y ; z). (iii) T rouverla diff érentiellede F(r; ) = (rcos; rsin).

2.1 Propriétés de la différentielle

Proposition

2.5. SiFdeRndansRmest linéaire, alorsdF(x) =F.

Proposition

2.6. SiFest différentiable enxalorsFest continue enx.

3

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

2.2 Différentielles des fonctions composées

SiFest une fonction deRndansRm, siGest une fonction deRmdansRq, alorsGF est une fonction deRndansRq.

Théorème

2.7. SiFest différentiable enx, et siGest différentiable enF(x), alors

GFest différentiable enxet on a :

d(GF)(x) =dG(F(x))dF(x):

Exercice

DériverGFlorsque

F(x; y) = (x2+y2; exy)

G(u; v) = (xy ;sinx; x2y)

2.3 Sur la règle de dérivation en chaîne

Le résultat théorique

Soientf:Rn!Retg:Rp!Rndeux fonctions différentiables. Écrivonsh=f g:D"après la règle de dérivation des fonctions composées nous avons (comme pour les fonctions deRdansR) : h

0(x) = (fg)0(x) =f0(g(x)):g0(x):

La fonctionfgest une fonction deRpdansR. Sa dérivée est donc un vecteur ligne àp colonnes, la transposée de son gradient : h

0(x) =

@h@x 1@h@x

2:::@h@x

p La fonctiongest une fonction deRpdansRn. Sa dérivée est la matricenpcomposée des vecteurs transposés des gradients des coordonnées deg. Sig(x) = (g1(x);g2(x);:::;g2(x)) (on devrait écrire ce vecteur en colonne si on voulait se conformer en toute rigueur aux choix du cours) la dérivée degs"écrit : g

0(x) =0

B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............quotesdbs_dbs2.pdfusesText_2