[PDF] TD3–Di?érentiabilitédesfonctionsdeplusieursvariables Exercice1



Previous PDF Next PDF
















[PDF] exo7 fonction a plusieurs variables cours

[PDF] continuité d'une fonction ? deux variables exercic

[PDF] exercice dérivée partielle corrigé

[PDF] multiple et diviseur 4eme controle

[PDF] detection de contours traitement d'image

[PDF] filtre moyenneur traitement d'image

[PDF] filtre gaussien matlab traitement d'image

[PDF] moteur de recherche internet

[PDF] moteur de recherche francais

[PDF] francis ponge le parti pris des choses pdf

[PDF] les moteurs de recherche les plus utilisés

[PDF] francis ponge mouvement

[PDF] moteur de recherche définition

[PDF] francis ponge biographie

[PDF] moteurs de recherche gratuits

TD3–Di?érentiabilitédesfonctionsdeplusieursvariables Exercice1

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD3 - Différentiabilité des fonctions de plusieurs variables Exercice 1.Montrer d"après la definition que la fonction : f(x,y) =x2+y2 est différentiable dansR2. Calculer la différentielle. Solution. La fonctionfest différentiable au point(x0,y0)?R2ssi : lim

21+h22= 0.

Dès que :

f(x0+h1,y0+h2) =x20+h21+ 2x0h1+y20+h22+ 2y0h2, ?f(x0,y0) = (2x0,2y0), la limite se réduit à : lim (h1,h2)→(0,0)h

21+h22Èh

21+h22= lim(h1,h2)→(0,0)Èh

21+h22= 0.

Cela suffit pour prouver quefest différentiable dansR2.

Exercice 2.Soitf:R2?→Rdéfinie par :

f(x,y) =xexy. Est-elle différentiable au point(1,0)? Si oui, linéariserfau voisinage de(1,0)et approcher la valeurf(1.1,-0.1). Solution. La fonctionfest dérivable dansR2car composition de fonctions dérivables. Les dérivées partielles : ?f(x,y) = (∂xf(x,y),∂yf(x,y)) = (exy+xyexy,x2exy) sont elles-mêmes dérivables dansR2car composition de fonctions dérivables. La fonctionfest de classeC1surR2et donc elle est différentiable dansR2. En particulier elle est différentiable

au point(1,0). Dès que la fonction est différentiable, elle admet une linéarisation au voisinage

de(1,0): f(x,y) =f(1,0) + (x-1)∂xf(1,0) +y∂yf(1,0) +o(È(x-1)2+y2), f(x,y) = 1 + (x-1) +y+o(È(x-1)2+y2) =x+y+o(È(x-1)2+y2). Cette linéarisation est valide localement, au voisinage du point(1,0), et pas dans toutR2! Pour approcher la valuerf(1.1,-0.1)on calcule : f(1.1,-0.1)≈1.1-0.1≈1 e on sait que l"erreur d"approximation est un petit o de

È(x-1)2+y2. Plusx,ysont proches

(en terms de distance! ) du point(1,0)plus l"approximation est précise. Calculer avec une calculatrice la valeur exacte def(1.1,-0.1). 1

Exercice 3.Soitf:R2?→Rdéfinie par :

f(x,y) =x3-y3.

Dire si le graphe def:

G f={(x,y,z)?R3t.q.z=f(x,y)} admet un plan tangent au point(0,1,-1)et, le cas échant, donner l"équation du plan. Solution. Dire que le grapheGfadmet un plan tangent au point(0,1,-1)est équivalent à dire quefest différentiable au point(0,1). Clairement la fonctionfest de classeC1dansR2et donc différentiable dansR2. L"èquation du plan tangent est : t(x,y) =f(0,1) +∂xf(0,1)x+∂yf(0,1)(y-1) =-1-3(y-1) = 2-3y

Exercice 4.Soitf:R2?→Rdéfinie par :

f(x,y) =( x2y3x

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle de classeC1dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on utilise les cordonnées polaires de centre(0,0): x=rcosθ y=rsinθ avecr >0etθ?[0,2π[. On veut montrer que : lim r→0f(rcosθ,rsinθ) = 0 et que cette limite ne dépend pas de l"angleθ. En pratique il faut trouver une fonction g(r)de la seule variablertelle que

0≤ |f(rcosθ,rsinθ)| ≤ |g(r)|

etg(r)→0sir→0. Rappel : ne pas mettre la valuer absolue dans la majoration conduit

à des résultats faux.

f(rcosθ,rsinθ) =r2cos2θr3sin3θr

2(cos2θ+ sin2θ)=r3cos2θsin3θ

Dès que|cos2θsin3θ| ≤1on a :

0≤ |f(rcosθ,rsinθ)| ≤ |r3|

etr3→0sir→0. Donc lim (x,y)→(0,0)f(x,y) = 0 =f(0,0).

Cela prouve que la fonction est continue dansR2.

2 •Dérivabilité. On se demande si la fonctionfest dérivable. Si(x,y)?= (0,0): ∂f∂x (x,y) =2xy5(x2+y2)2 ∂f∂y (x,y) =x2y2(3x2+y2)(x2+y2)2 Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 ∂f∂y (0,0) = limh→0f(0,h)-f(0,0)h = limh→00-0h = 0 Cela prouve quefest dérivable au point(0,0)et∂xf(0,0) =∂yf(0,0) = 0. •ClasseC1. On se demande si les dérivées partielles def: xf(x,y) =(

2xy5(x2+y2)2si(x,y)?= (0,0)

0sinon

yf(x,y) =( x2y2(3x2+y2)(x2+y2)2si(x,y)?= (0,0)

0sinon

sont fonctions continues dansR2. Elles sont continues dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on calcule les limites : lim (x,y)→(0,0)∂xf(x,y) lim(x,y)→(0,0)∂yf(x,y) à l"aide des cordonnées polaires de centre(0,0). xf(rcosθ,rsinθ) =2rcosθr5sin5θr

4(cos2θ+ sin2θ)2= 2r2cosθsin5θ.

Dès que|cosθsin5θ| ≤1on a :

0≤ |∂xf(rcosθ,rsinθ)| ≤2|r2|

et2r2→0sir→0. Donc lim (x,y)→(0,0)∂xf(x,y) = 0 =∂xf(0,0).

Même chose pour∂yf:

yf(rcosθ,rsinθ) =r2cos2θr2sin2θ(3r2cos2θ+r2sin2θ)r

4(cos2θ+ sin2θ)2= cos2θsin2θ(3r2cos2θ+r2sinθ)

Dès que|cos2θsin2θ| ≤1et que|a+b| ≤ |a|+|b|pour touta,b?Ron a :

0≤ |∂yf(rcosθ,rsinθ)| ≤3|r2cos2θ|+|r2sin2θ| ≤4|r2|

et4r2→0sir→0. Donc lim (x,y)→(0,0)∂yf(x,y) = 0 =∂yf(0,0).

Cela prouve quef?C1(R2).

3 •Différentiabilité. La fonction est de classeC1donc elle est différentiable dansR2.

Exercice 5.Soitf:R2?→Rdéfinie par :

f(x,y) =¨ yx

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on considère la restriction defà la droitey=x: f(x,x) =12x qui ne tend pas vers0 =f(0,0)lorsquex→0. Donc la fonction n"est pas continue au point(0,0).

•Dérivabilité. On se demande si la fonction admet toutes les dérivées partielles. Si(x,y)?=

(0,0): ∂f∂x (x,y) =-2xy(x2+y2)2 ∂f∂y (x,y) =x2-y2(x2+y2)2

Doncfest dérivable dansR2\ {(0,0)}.

Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 lim h→0f(0,h)-f(0,0)h

La dérivée partielle par rapport àxexiste dansR2et la dérivée partielle par rapport ày

quotesdbs_dbs2.pdfusesText_2