[PDF] Mathématiques MPSI



Previous PDF Next PDF




























[PDF] livre mathematique 4eme pdf

[PDF] livre mathématique terminale s pdf

[PDF] livre mathématiques financières pdf

[PDF] livre mathématiques terminale s pdf

[PDF] livre maths 1ere s hachette correction

[PDF] livre maths 1ere sti2d hachette pdf

[PDF] livre maths 1ere stmg nathan corrigé

[PDF] livre maths 3eme phare pdf

[PDF] livre maths mpsi

[PDF] livre maths terminale s hachette pdf

[PDF] livre maths terminale s pdf

[PDF] livre mercatique terminale stmg hachette corrigé

[PDF] livre merise pdf

[PDF] livre momo petit prince des bleuets

[PDF] livre monnaie

Mathématiques MPSI

Mathématiques MPSI

Pierron Théo

ENS Ker Lann

2

Table des matièresI Algèbre1

1 Ensembles3

1.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Opérations sur les parties d"un ensemble . . . . . . . . . . . . 4

1.3 Relations d"ordre . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Applications7

2.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Fonction et application . . . . . . . . . . . . . . . . . . 7

2.1.2 Restriction et prolongement d"applications . . . . . . .8

2.1.3 Composition d"applications . . . . . . . . . . . . . . . 8

2.1.4 Image directe et réciproque de parties par une application 9

2.2 Injections, surjections, bijections . . . . . . . . . . . . . . .. . 10

2.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Étude des bijections . . . . . . . . . . . . . . . . . . . 11

3 Le principe de récurrence13

3.1 Axiomes de Péano . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . 13

4 Ensembles finis17

4.1 Notion d"ensemble fini . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Résultats essentiels sur les ensembles finis . . . . . . . 18

4.2 Analyse combinatoire . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Résultats généraux . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Combinaisons . . . . . . . . . . . . . . . . . . . . . . . 19

5 Arithmétique dansZ21

5.1 Structure additive deZ. . . . . . . . . . . . . . . . . . . . . . 21

5.2 PGCD et PPCM de deux entiers . . . . . . . . . . . . . . . . 22

i iiTABLE DES MATIÈRES

5.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 Entiers premiers entre eux . . . . . . . . . . . . . . . . 23

5.2.3 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . 25

5.3 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Le corps des réels29

6.1 Relation d"ordre surR. . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.2 Bornes supérieure et inférieure d"une partie deR. . . 30

6.2 Théorème de la borne supérieure . . . . . . . . . . . . . . . . 31

6.2.1 Énoncé . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2.2 Partie entière d"un réel . . . . . . . . . . . . . . . . . . 32

6.2.3 Notion d"intervalle . . . . . . . . . . . . . . . . . . . . 33

6.3 Droite numérique achevée . . . . . . . . . . . . . . . . . . . . 34

7 Les complexes35

7.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Rappels sur les complexes . . . . . . . . . . . . . . . . . . . . 36

7.2.1 Opérations dansC. . . . . . . . . . . . . . . . . . . . 36

7.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.3 Module . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Forme trigonométrique d"un complexe . . . . . . . . . . . . . . 37

7.3.1 Écriture trigonométrique . . . . . . . . . . . . . . . . . 37

7.3.2 Calcul numérique d"un argument . . . . . . . . . . . . 38

7.4 Exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . 38

7.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.4.3 Étude de formes trigonométriques . . . . . . . . . . . . 40

7.5 Racinesn-ièmes d"un complexe . . . . . . . . . . . . . . . . . 41

7.5.1 Définition et expression . . . . . . . . . . . . . . . . . . 41

7.5.2 Extraction des racines carrées d"un complexe sous forme

algébrique . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5.3 Équation du second degré . . . . . . . . . . . . . . . . 43

8 Géométrie plane45

8.1 Repérage d"un point dans le plan . . . . . . . . . . . . . . . . 45

8.1.1 Repère cartésien . . . . . . . . . . . . . . . . . . . . . 45

8.1.2 Orientation du plan . . . . . . . . . . . . . . . . . . . . 47

8.1.3 Repérage polaire du plan . . . . . . . . . . . . . . . . . 47

8.2 Identification dePdansC. . . . . . . . . . . . . . . . . . . . 48

8.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 48

TABLE DES MATIÈRESiii

8.2.2 Représentation analytique complexe d"applicationsde

PdansP. . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Outils géométriques . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3.1 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . 50

8.3.2 Produit mixte . . . . . . . . . . . . . . . . . . . . . . . 51

8.3.3 Un exercice corrigé . . . . . . . . . . . . . . . . . . . . 52

8.4 Étude des droites du plan . . . . . . . . . . . . . . . . . . . . 53

8.4.1 Description d"une droite dans un repère quelconque . .53

8.4.2 Étude quand le repère d"étude est orthonormé direct . 55

8.4.3 Distance d"un point à une droite . . . . . . . . . . . . . 57

8.4.4 Angles de droites . . . . . . . . . . . . . . . . . . . . . 58

8.5 Étude des cercles . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.5.1 Repérage cartésien d"un cercle . . . . . . . . . . . . . . 58

8.5.2 Autres paramétrages d"un cercle . . . . . . . . . . . . . 61

8.5.3 Intersection droite-cercle . . . . . . . . . . . . . . . . . 62

9 Coniques65

9.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.3 Hyperbole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.1 Paramétrages . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.2 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . 71

9.4 Parabole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Courbes du second degré75

10.1 Changements de repères . . . . . . . . . . . . . . . . . . . . . 75

10.1.1 Effet d"une translation . . . . . . . . . . . . . . . . . . 75

10.1.2 Effet d"une rotation . . . . . . . . . . . . . . . . . . . . 75

10.2 Étude deA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11 Géométrie dans l"espace usuel 79

11.1 Repérage dansE. . . . . . . . . . . . . . . . . . . . . . . . . 79

11.1.1 Repère cartésien . . . . . . . . . . . . . . . . . . . . . 79

11.1.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2 Outils géométriques . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2.1 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . 80

11.2.2 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . 81

11.2.3 Produit mixte . . . . . . . . . . . . . . . . . . . . . . . 82

11.3 Plans de l"espace . . . . . . . . . . . . . . . . . . . . . . . . . 83

11.3.1 Représentation dans un repère quelconque . . . . . . . 83

11.3.2 Dans un repère orthonormé . . . . . . . . . . . . . . . 84

ivTABLE DES MATIÈRES

11.4 Droites de l"espace . . . . . . . . . . . . . . . . . . . . . . . . 85

11.4.1 Dans un repère quelconque . . . . . . . . . . . . . . . . 85

11.4.2 Distance d"un point à une droite . . . . . . . . . . . . . 87

11.4.3 Perpendiculaire commune à deux droites . . . . . . . . 88

11.5 Étude des sphères . . . . . . . . . . . . . . . . . . . . . . . . . 89

12 Groupes, anneaux, corps93

12.1 Lois de composition . . . . . . . . . . . . . . . . . . . . . . . . 93

12.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . 93

12.1.2 Propriétés des lois de composition internes . . . . . . .93

12.1.3 Élements remarquables d"un ensemble . . . . . . . . . 94

12.1.4 Propriétés des lois associatives . . . . . . . . . . . . . . 95

12.1.5 Notations multiplicatives . . . . . . . . . . . . . . . . . 95

12.1.6 Notations additives . . . . . . . . . . . . . . . . . . . . 96

12.2 Groupes et morphismes de groupes . . . . . . . . . . . . . . . 96

12.3 Sous-groupes . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

12.4 Structure d"anneau et de corps . . . . . . . . . . . . . . . . . . 99

12.4.1 Définitions et exemples . . . . . . . . . . . . . . . . . . 99

12.4.2 Règles de calculs dans un anneau . . . . . . . . . . . . 100

13 Résolution de systèmes linéaires 103

13.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13.2 Pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . 104

13.2.1 Opération de Gauss . . . . . . . . . . . . . . . . . . . . 104

13.2.2 Quelques exemples . . . . . . . . . . . . . . . . . . . . 105

13.3 Compléments pour limiter les calculs . . . . . . . . . . . . . . 106

13.4 Compatibilité d"un système linéaire . . . . . . . . . . . . . . .107

14 Structure d"espace vectoriel 109

14.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

14.2 Sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . 111

14.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 111

14.2.2 Stabilité de la notion de sous-espace vectoriel . . . .. 112

14.2.3 Somme de sous-espaces vectoriels . . . . . . . . . . . . 114

14.3 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . 116

14.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . 116

14.3.2 Image directe et réciproque de sous-espaces vectoriels . 118

14.3.3 Équations linéaires . . . . . . . . . . . . . . . . . . . . 118

14.3.4 Structure deL(E,E?) . . . . . . . . . . . . . . . . . . . 119

14.4 Liens entre applications linéaires et sommes directes. . . . . . 120

14.4.1 Construction d"une application linéaire . . . . . . . . .120

TABLE DES MATIÈRESv

14.4.2 Projecteurs d"un espace vectoriel . . . . . . . . . . . . 121

14.4.3 Symétries d"unK-espace vectoriel . . . . . . . . . . . . 123

15 Familles de vecteurs125

15.1 Décomposition d"un vecteur . . . . . . . . . . . . . . . . . . . 125

15.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 125

15.1.2 Familles génératrices . . . . . . . . . . . . . . . . . . . 125

15.1.3 Familles libres . . . . . . . . . . . . . . . . . . . . . . . 126

15.2 Bases d"un espace vectoriel . . . . . . . . . . . . . . . . . . . . 128

15.2.1 Définition et exemples . . . . . . . . . . . . . . . . . . 128

15.2.2 Existence de base . . . . . . . . . . . . . . . . . . . . . 128

15.2.3 Notion de dimension . . . . . . . . . . . . . . . . . . . 129

15.2.4 Théorème fondamental . . . . . . . . . . . . . . . . . . 131

15.3 Étude pratique d"une famille de vecteurs . . . . . . . . . . . .132

15.4 Systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . 134

16 Applications linéaires en dimension finie 137

16.1 Image d"une famille de vecteurs . . . . . . . . . . . . . . . . . 137

16.1.1 Deux propositions . . . . . . . . . . . . . . . . . . . . . 137

16.1.2 Image d"une base . . . . . . . . . . . . . . . . . . . . . 138

16.1.3 Théorème fondamental . . . . . . . . . . . . . . . . . . 139

16.2 Calcul de dimensions . . . . . . . . . . . . . . . . . . . . . . . 140

16.2.1 Résultats généraux et applications directes . . . . . .. 140

16.2.2 Étude des suites récurrentes linéaires . . . . . . . . . . 140

16.3 Rang d"une application linéaire . . . . . . . . . . . . . . . . . 142

16.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 142

16.3.2 Théorème du rang . . . . . . . . . . . . . . . . . . . . 142

16.3.3 Équations d"hyperplans . . . . . . . . . . . . . . . . . . 143

16.4 Description analytique d"une application linéaire . .. . . . . . 144

16.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 144

16.4.2 Usage d"une représentation analytique . . . . . . . . . 145

16.4.3 Opérations sur les applications linéaires . . . . . . . .. 147

17 Sous-espaces vectoriels d"un espace vectoriel de dimension

finie151

17.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

17.1.1 Dimension d"un sous-espace vectoriel . . . . . . . . . . 151

17.1.2 Représentation d"un sous-espace vectoriel . . . . . . .. 152

17.2 Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . 152

17.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . 152

17.2.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 155

viTABLE DES MATIÈRES

18 Calcul matriciel157

18.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 157

18.2 Opérations sur les matrices . . . . . . . . . . . . . . . . . . . . 158

18.2.1 Addition et produit par un scalaire . . . . . . . . . . . 158

18.2.2 Multiplication de deux matrices . . . . . . . . . . . . . 158

18.2.3 Transposition . . . . . . . . . . . . . . . . . . . . . . . 159

18.3 Le pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . 159

18.3.1 Outils de base . . . . . . . . . . . . . . . . . . . . . . . 159

18.3.2 Pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . 160

18.3.3 Résolution d"un système linéaire . . . . . . . . . . . . . 161

18.3.4 Calcul d"un inverse . . . . . . . . . . . . . . . . . . . . 162

quotesdbs_dbs2.pdfusesText_2