[PDF] Chapitre 5 Formes quadratiques et matrices symétriques - LPTHE



Previous PDF Next PDF


























[PDF] exercice type bac les pluies acides correction

[PDF] les pluies acides spé physique corrigé

[PDF] forme différentielle exacte exercices corrigés

[PDF] formes differentielles exercices

[PDF] exercices corrigés sur la circulation d'un champ d

[PDF] integrale curviligne exercice corrigé pdf

[PDF] différentielle totale exacte exercice corrigé

[PDF] exercices corrigés integrales curviligne et integr

[PDF] acide ascorbique carbone asymétrique

[PDF] exercice arithmétique dans n

[PDF] arithmétique dans z pdf

[PDF] cogénération en exploitation agricole corrigé

[PDF] mini digesteur biogaz

[PDF] comment fabriquer un digesteur pdf

[PDF] fabrication d un digesteur biogaz

Chapitre5.Matricessym´e trique setformesquadratiques.67 Chapitre5.Formesquadr atique setmatricessym´et riques.

1.For mesbilin´eaires ,formesquadratiques

1.1.Forme sbilin´eaireset quadratiques

Onad ´ej `arencontr´elanot iondeformemultilin´eaire(Chap.2).Su runesp acevectorie l E,onappelleformebilin´eair er´eelleuneapplicat ionquifai tcorrespondre`atoutepairede vecteursX,Y!Eunno mbrer´eelf(X,Y),ce tteapplicati on´etantlin´eaireenXetenY, donc f(! 1 X 1 2 X 2 ,Y)=! 1 f(X 1 ,Y)+! 2 f(X 2 ,Y) f(X,µ 1 Y 1 2 Y 2 1 f(X,Y 1 2 f(X,Y 2 ).(1.1) Lafo rmebilin´eaireestd itesym´etriquesif(X,Y)=f(Y,X).

Exemples.Leproduitscalaire

X.

Ydansl'es paceeuclidienR

n estun eformebil in´eaire sym´etrique.Lacomposantesurunaxed onn ´eduproduitvectoriel X"

Ydansl'es pace

R 3 estun eformebil in´eaire,maispassy m´etrique(elleestenfaitantisy m´etrique!).Sig ethsontdeuxfon ctionsd'un evariabler´eelle,int´egrabl essuruni nte rvalle(a,b),f(g,h)= b a g(x)h(x)dxestun eformebil in´eairesym´etriq ueengeth. Lepr emierexemplesugg`ere lad´efinitionsuiva nte:

Etantdonn´ee uneformebilin´eaire

Etantdonn´ee laformebilin´eairef(X,Y),on luiass ocieuneformequadrat iquepar

Q(X)=f(X,X).(1.2)

Biensˆur, cetteformequadra tiquen'estpaslin ´eaire:Q(!X)=! 2

Q(X).In versement

pourtoutef ormequadratique Q,onpeutconstruireuneformebilin´eairesym´etriquef bilin´earit´e etsio nfa itl'hy poth`esequefestsym ´etrique,f(X,Y)= 1 2 (f(X+Y,X+Y)#f(X,X)# f(Y,Y))= 1 2 (Q(X+Y)#Q(X)#Q(Y)).

J.-B.Z.7Mars2013

68M´ethodesmath´ematiquesp ourphysiciens2.LP207

n cor- respondlaformequadrati que$ X$ 2 X. Xquiestl anormeca rr´ee( lalongueurcarr´ ee) duve cteur

X.Demˆeme,

b a f 2 (x)dxestun enormecar r´eepourlesfonctio ns(decarr´e int´egrable)sur(a,b). Th´eor`emedePythagore.Soitfunefo rmebilin´eairesy m´etrique,Qlafo rme quadratiqueassoci´ee,onapourt outepairedevecteursorthogonaux %X,Y:f(X,Y)=0=&Q(X+Y)=Q(X)+Q(Y),(1.4) quid´ec oulede(1.3).

1.2.Forme sd´efiniespositi ves

Ondi tquelafor mequadrat iqueQestd´efiniepositivesi %X'=0!EQ(X)>0,(1.5) etdo ncQ(X)=0sietseulementsiX=0.Laformeestsemi-d´efiniepositivesil' in´egalit´e n'estpasstrict e:%X'=0!EQ(X)(0,el leestind´efiniesiQ(X)peutprendreun signeoul'autr eselonla valeurdeX.Parabusdelangageonditd'uneformebilin´eaire

qu'elleestd´efiniep ositive,s emi-d´efiniepositive, etc,sila formeq uadratiqueassoci´ee l'est.

n estd´ efinipositif,Q( X) d´efinissantlanormecarr´ee,c' est-`a -direlalongueur carr´eeduvecteu r

X.Aucontraire,

dansl'es pace-tempsdelaRelativit´erestreinte(espa ced eMinkowski),laformequadratique

Q(X)=c

2 t 2 #x 2 1 #x 2 2 #x 2 3 estin d´efinie:lesquadrivecteursde" genr etemps" ontune normecarr´ee positive,ceuxde"genreespa ce"unenormecarr´een´egat ive,ceuxde"genre lumi`ere"unenormenulle.Dan sl'espaceR 2 ,laformequadratiqueQ(X)=x 1 x 2 est ind´efinieetlaformeQ (X)=(x 1 #x 2 2 estsemi -d´efiniepositive,pourquoi? Sila formes ym´etriquefestd ´efiniepositive,pourto utepaireX,Ydeve cteursnon colin´eairesettoutr´eel!,levecteur!X+Yn'estpasnul,donc Q(!X+Y)>0est strictementpositif.Or

Q(!X+Y)=!

2

Q(X)+2!f(X,Y)+Q(Y).

estun trinˆ omeduseconddegr´een!,etlefaitqu'ilesttoujoursstrictementpositifimplique quesond iscrimina ntestn´egatif,donc =f(X,Y) 2 #Q(X)Q(Y)<0

7Mars2013J.-B.Z.

Chapitre5.Matricessym´e trique setformesquadratiques.69

Enre vanchesiXetYsontcolin´ea ires,ilexisteun!

0 telque! 0

X+Y=0,etalors

Q(!X+Y)(0s'annuleen!

0 maisnechan gepasd esigne,sondiscrimin antestnul .On obtientainsil'in´egalit´edeSchwarz |f(X,Y)|)(Q(X)Q(Y)) 1 2 ,(1.6) avec´egali t´esietseulementsiXetYsontcolin´ea ires. 3 ,cettein´egalit´enousditque X. Y|)$ X$$ Y$ ouen core,sionserappellel aformul ede trigonom´ etriecos#= X. Y X"" Y" ,que|cos#|)1, avec´egali t´essi#=0ou$donc Xet Ycolin´eaires.Plusg´en´eralement,po urtouteform e

bilin´eaired´efiniepositive,l'in´ egalit´edeSchwarz (1.6)nous permetded´e finir(ausignepr`es

et`a 2$pr`es)l'angle#entredeuxvecteurs XetYparcos#=f(X,Y)/(Q(X)Q(Y)) 1 2

1.3.Repr´ esentationsmatricielles

Supposonsquel'onachoi siunebase e

i dansl'es paceE.Danscettebase,on´ecritles vecteursX= i x i e i etY= i y i e i ,donclaformebilin´eaire f(X,Y)= ij x i y j f(e i ,e j ij x i b ij y j o`ulama triceBdela formebi lin´eaire(danslaba sechoisiee i )estd´efiniepar B=(b ij )b ij =f(e i ,e j ).(1.7)

Cettematrice estsym´etrique,b

ij =b ji notationXetYpourlesma tricescol onnesdescomposantesdeXetY,onvoitquel'on peut´ecrir e f(X,Y)=X T BY.

Supposonsmaintenantq uel'one

ectueunchangeme ntde basee i *e j i e i a ij (cfChap 1,(2.4)).Commeo nl'avu auchapitre1, lescomposantesXetX d'un vecteurdonn´edansl' ancienneetlanouvel lebasesontre li´ees par X=AX (Chap1, (2.5)).Parcons ´equentla formebilin´eaires'exprimemaintenantselonf(X,Y)=X T BY= X !T A T BAY donc`al' aidedela matriceB =A T

BA(etnonp asselonA

#1

BAcomme

pouruneapp licationl in´eaire,compareravecChap1,(4.4) !)

J.-B.Z.7Mars2013

70M´ethodesmath´ematiquesp ourphysiciens2.LP207

2.R ´eductiond'uneformequadratiqu e

Danstoute cettesectionons upposeraquelesf ormesbilin´eairesetlesmatr icesass oci´ees sontsym´etri ques.

2.1.Vect eursorthogonaux,vecteursorthon orm´es

D´efinition:Sifestun eformebil in´eairesym´etriqu ed´efiniepositive,onditquedes vecteursX 1 ,···,X k sontorthonorm´es(pourlaforme f)si f(X i ,X j ij autrementditsicesvecteurs sontdeux` adeuxor thogonaux:f(X i ,X j )=0siX i '=X j ets'i lssontnorm´esQ(X i )=1.

Lemme1:Sile svecteurs X

1 ,···,X k sontorthon orm´es(pourlaformef),il ssont Lapr euve(´el´ementaire! )estlaiss´eeenexercice.

2.2.Proc ´ed´ed'orthonormalisationdeSchmidt

Soitfunefo rmebilin´eairesy m´etriqued´efiniepositive.

Th´eor`eme1:

Apartirdetoutsyst`emedekvecteurslin´eairementi nd´ependants X 1 ,···,X k X 1 X k ,combi- naisonslin´eaire sdesX 1 ,···,X k Preuveparr´ecurre ncesurk.Pourk=1,ondisposed'unvecteurX 1 nonnul,d oncdenorme nonnull e.Levecteur X 1 =X 1 /Q(X 1 1 2 estbienn orm´e.Supposo nsalorslapropri´et´e vraiepourtout syst`emedek!1ve cteurs,etconsid´eronslesy st`em edekvecteurslin´eairementin d´ependantsX 1 ,···,X k

Leso us-syst`emeX

1 ,···,X k#1 remplitlaconditiond er´ec urrence,onpeutdoncconstruireun syst`emede k!1ve cteursorthonorm´es X 1 X k#1 ,c ombinaisonslin´eairesdesX 1 ,···,X k#1 .Lek-i`emevecteur X k estind´ ependantdeX 1 ,···,X k#1 doncauss ide X 1 X k#1 .Ch erchonsunY=X k k#1 i=1 i X i orthogonal`a X 1 X k#1 :en prenan tleproduitscalairepa rfentrecetYetlesa utres:f(Y, X i f(X k X i i ,on d´ete rmine! i =!f(X k X i ).Fi nalementcevecteurY´eta ntn onn ul( san squ oi X k nesera itpaslin´eaireme ntind´ep endantdes X 1 X k#1 ),ils u tde lenorme rpouro btenir X k

Y/f(Y,Y)

1 2 ettermi nerlapreuveparr´ecurren ce. Ceth ´eor`emeacommecorollairequel' onp euttoujourstrou verune baseortho normale dansl'es pacevectorielE. Biencompre ndrequeceth´eor`eme,sousl'hypot h`ese del'existenced'uneformequotesdbs_dbs43.pdfusesText_43