[PDF] Fonctions de plusieurs variables - Exo7 - Exercices de mathématiques



Previous PDF Next PDF


























[PDF] cours d'électrostatique pdf

[PDF] pgcd de polynomes

[PDF] variable aléatoire continue exercices corrigés exo

[PDF] exo7 math suite

[PDF] comment montrer qu'une suite est bornée

[PDF] espace vectoriel normé exercice corrigé+pdf

[PDF] topologie des espaces vectoriels normés exercices

[PDF] exode rurale causes et consequences

[PDF] l'exode rural définition

[PDF] exode rural causes et consequences pdf

[PDF] exode rural en afrique

[PDF] solutions contre l'exode rural

[PDF] les avantages de l'exode rural

[PDF] conclusion de l'exode rural

[PDF] exposé sur l'exode rural

Exo7

Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1**TEtudier l"existence et la valeur éventuelle d"une limite en(0;0)des fonctions suivantes :

1. xyx+y 2. xyx 2+y2 3. x2y2x 2+y2 4.

1+x2+y2y

siny 5. x3+y3x 2+y2 6. x4+y4x 2+y2. t7!xt2+ytpuisF(x;y) =sup t2[1;1]f x;y(t). Etudier la continuité deFsurR2. xy(x2y2)x

2+y2si(x;y)6= (0;0).

(x;y)7!(0 siy=0 y

2sinxy

siy6=0. 1.

Etudier la continuité de f.

2.

Etudier l"e xistenceet la v aleurév entuellede déri véespartielles d"ordre 1 et 2. On montrera en particulier

que

Déterminer une fontion de classeC2sur un intervalleIdeRà préciser à valeurs dansRtelle que la fonction

1 g(x;y) =fcos2xch2y

soit non constante et ait un laplacien nul sur un sous-ensemble deR2le plus grand possible (une fonction de

Laplacien nul est dite harmonique).

1.f:R2!R

(x;y)7!x2+xy+y2+2x+3y

2.f:R2!R

(x;y)7!x4+y44xy admettra que ce maximum existe).

2+(ya)2+py

2+(xa)2.

dansRqui à(x;y)associejyx vérifie : 3. 1. 2

2+y2surD=f(x;y)2R2=x>0g(en passant en polaires).

Correction del"exer cice1 NOn notefla fonction considérée. 1.

Pour x6=0,f(x;x+x3)=x(x+x3)xx+x3x!0+1x

. Quandxtendvers0,x+x3tendvers0puis lim(x;y)!(0;0) x>0;y=x+x3f(x;y)=

¥.fn"a de limite réelle en(0;0).

2.

Pour x6=0,f(x;0) =x0x

2+02=0 puis lim(x;y)!(0;0)

y=0f(x;y) =0. Mais aussi, pourx6=0,f(x;x) =xxx

2+x2=12

puis lim (x;y)!(0;0)x=yf(x;y) =12 . Donc sifa une limite réelle, cette limite doit être égale à 0 et à12 ce qui est impossible.fn"a pas de limite réelle en(0;0). 3. Pour tout (x;y)2R2,x22jxyj+y2= (jxjjyj)2>0 et doncjxyj612 (x2+y2). Par suite, pour(x;y)6= (0;0), jf(x;y)j=x2y2x

2+y26(x2+y2)24(x2+y2)=14

(x2+y2).

Comme lim

(x;y)!(0;0)14 (x2+y2) =0, on a aussi lim(x;y)!(0;0)f(x;y) =0. 4. lim (x;y)!(0;0)sinyy =1 et lim(x;y)!(0;0)(1+x2+y2) =1. Donc lim(x;y)!(0;0)f(x;y) =1. 5.

Pour (x;y)2R2,jx3+y3j=jx+yj(x2+xy+y2)632

jx+yj(x2+y2)et donc pour(x;y)6= (0;0), jf(x;y)j=jx3+y3jx

2+y2632

jx+yj.

Comme lim

(x;y)!(0;0)32 jx+yj=0, on a aussi lim(x;y)!(0;0)f(x;y) =0. 6.

Pour (x;y)2R2,jx4+y4j= (x2+y2)22x2y26(x2+y2)2+212

(x2+y2)2=32 (x2+y2)2et donc pour(x;y)6= (0;0), jf(x;y)j=jx4+y4jx

2+y2632

(x2+y2).

Comme lim

(x;y)!(0;0)32

(x2+y2) =0, on a aussi lim(x;y)!(0;0)f(x;y) =0.Correction del"exer cice2 NDéterminonstoutd"abordF(x;y)pour(x;y)2R2. •Poury2R,F(x;y)=Maxff0;y(1);f0;y(1)g=Maxfy;yg=

jyj. • Six6=0,F(x;y) =Maxfx;y(1);fx;yy2x;fx;y(1)=Maxn x+y;xy;y24xo =Maxn x+jyj;y24xo Plus précisément, six>0, on ax+jyj>0 ety24x60. DoncF(x;y) =x+jyjce qui reste vrai quandx=0. Si x<0,x+jyj y24x =4x2+4xjyj+y24x=(2x+jyj)24x<0 et doncF(x;y) =y24x.

8(x;y)2R2;F(x;y) =(x+jyjsix>0

y24xsix<0.En vertu de théorèmes généraux,Fest continue surf(x;y)2R2;x>0getf(x;y)2R2;x<0g. Soity06=0.

lim(x;y)!(0;y0) x<0;y=y0F(x;y) = +¥6=jy0j=F(0;y0)et doncFn"est pas continue en(0;y0). Enfin, lim(x;y)!(0;0) x<0;y=pxF(x;y) = 14

6=0=F(0;0)et doncFn"est pas continue en(0;0).

3

Fest continue surR2nf(0;y);y2Rget est discontinue en tout(0;y),y2R.Correction del"exer cice3 N• Pour(x;y)2R2,x2+y2=0,x=y=0 et doncfest définie surR2. •fest de classeC¥surR2nf(0;0)g

en tant que quotient de fonctions de classeC¥surR2nf(0;0)gdont le dénominateur ne s"annule pas sur

R

2nf(0;0)g.

2+y2=jxyj. Commelim(x;y)!(0;0)jxyj=0, onendéduitque lim(x;y)!(0;0)

(x;y)6=(0;0)f(x;y)= f(x;0)f(0;0)x0=x0(x202)x(x2+02)=0, et donc lim

x!0f(x;0)f(0;0)x0=0. Ainsi,fadmet une dérivée partielle par rapport à sa première variable en(0;0)

et

Finalement,fadmet surR2une dérivée partielle par rapport à sa première variable définie par

:0 si(x;y) = (0;0) y(x4+4x2y2y4)(x2+y2)2si(x;y)6= (0;0). dansR2 Donc,fadmet surR2une dérivée partielle par rapport à sa deuxième variable définie par :0 si(x;y) = (0;0) x(x44x2y2y4)(x2+y2)2si(x;y)6= (0;0). R fest de classeC1exactement surR2.Correction del"exer cice4 N4

1.Posons D=f(x;y)=y6=0g.fest continue surR2nDen vertu de théorèmes généraux. Soitx02R.

jf(x;y)f(x0;0)j=(0 siy=0 y

2sinxy

siy6=06y2.

Comme lim

(x;y)!(x0;0)y2=0, lim(x;y)!(x0;0)jf(x;y)f(x0;0)j=0 et doncfest continue en(x0;0). Finalement, (x;y)2R2nD, xcosxy puis xy sinxy et enfin 2xy cosxy x2y

2sinxy

variable surR2définie par ycosxy f(x0;y)f(x0;0)y0=(0 siy=0 ysinx 0y siy6=06jyj: et donc dérivée partielle par rapport à sa deuxième variable surR2définie par

2ysinxy

xcosxy 5 et donc )y =1 et donc

décritR2,cos(2x)ch(2y)décrit[1;1]. On suppose déjà quefest de classeC2sur[1;1]. L"applicationgest alors de

classeC2surR2et pour(x;y)2R2, +4sin2(2x)ch

2(2y)f00cos2xch2y

Ensuite,

2(2y)f0cos2xch2y

puis

2cos(2x)sh(2y)4sh(2y)ch

3(2y)f0cos2xch2y

+4cos2(2x)sh2(2y)ch

4(2y)f00cos2xch2y

Mais alors

Dg(x;y) =8cos(2x)ch2(2y)+8cos(2x)sh2(2y)ch

3(2y)f0cos2xch2y

+4sin2(2x)ch2(2y)+4cos2(2x)sh2(2y)ch

4(2y)f00cos2xch2y

8cos(2x)ch

3(2y)f0cos2xch2y

4(2y)f00cos2xch2y

8cos(2x)ch

3(2y)f0cos2xch2y

+4ch2(2y)4cos2(2x)ch

4(2y)f00cos2xch2y

4ch 2(2y)

2cos(2x)ch(2y)f0cos2xch2y

1cos2(2x)ch

2(2y) f

00cos2xch2y

Par suite,

Dg=0, 8(x;y)2R2;2cos(2x)ch(2y)f0cos2xch2y

1cos2(2x)ch

2(2y) f

00cos2xch2y

=0 , 8t2[1;1];2t f0(t)+(1t2)f00(t) =0, 8t2[1;1];((1t2)f0)0(t) =0 , 9l2R;8t2[1;1];(1t2)f0(t) =l: 6 Le choixl6=0 ne fournit pas de solution sur[1;1]. Doncl=0 puisf0=0 puisfconstante ce qui est exclu. Donc, on ne peut pas poursuivre sur[1;1]. On cherche dorénavantfde classeC2sur]1;1[de sorte queg est de classeC2surR2nkp2 ;0;k2Z. fsolution, 9l2R;8t2]1;1[;(1t2)f0(t) =l, 9l2R=8t2]1;1[;f0(t) =l1t2

, 9(l;m)2RR=8t2]1;1[;f(t) =largtht+m:Correction del"exer cice6 N1.fest de classeC1surR2qui est un ouvert deR2. Donc sifadmet un extremum local en un point(x0;y0)

deR2,(x0;y0)est un point critique def. Or, pour(x;y)2R2, 8< x+2y+3=0,8 :x=13 y=43 Donc sifadmet un extremum local, c"est nécessairement en13 ;43 avecf13 ;43 =73 . D"autre part, f(x;y) =x2+xy+y2+2x+3y= x+y2 +1 2y2 +1

2+y2+3y=

x+y2 +1

2+3y24

+2y1 x+y2 +1 2+34 y+43 2 73
>73 =f 13 ;43

Doncfadmet un minimum local en13

;43

égal à73

et ce minimum local est un minimum global.

D"autre part,fn"admet pas de maximum local.

2.fest de classeC1surR2qui est un ouvert deR2. Donc sifadmet un extremum local en un point(x0;y0)

quotesdbs_dbs43.pdfusesText_43