[PDF]

La démonstration par récurrence sert lorsqu'on veut démontrer qu'une propriété, dépendant de n, est vraie pour toutes les valeurs de n On appelle dans ce cas 乡n la propriété en question On est ainsi amené à montrer que la propriété 乡n est vraie pour toutes les valeurs de n



Previous PDF Next PDF





[PDF] Raisonnement par récurrence - Maths-francefr

Raisonnement par récurrence 乡(n) désigne une certaine propriété dépendant d' un entier n et n0 désigne un entier naturel donné On veut démontrer que pour 



[PDF] Le raisonnement par récurrence - Maths-francefr

I Découverte du raisonnement par récurrence On considère la suite de la propriété est héréditaire L'hypothèse faite dans l'hérédité à savoir « si 乡(n) est



[PDF] Le raisonnement par récurrence

Finalement, P (n +1) est vraie et la propriété P est héréditaire 3 Conclusion La propriété P est vraie pour tout n ∈ N, à savoir : ∀n ∈ N, un



[PDF] Fiche méthode 1 : Le raisonnement par récurrence 1 Le principe de

On dit alors que la récurrence est initialisée 3 Pour n entier naturel quelconque, montrer que si la propriété est vraie au rang n, alors elle l'est aussi au 



[PDF] Chapitre 1 : Principe de raisonnement par récurrence

Alors la propriété est vraie à tout rang plus grand que n0 Observation La propriété p peut prendre des formes très variées : égalité, inégalité, phrase, affirmation, 



[PDF] Chapitre 1 Raisonnement par récurrence

3) Bien sûr, dans un raisonnement par récurrence, on ne va pas te demander de démontrer qu'une propriété est fausse (surtout en Terminale) EXERCICE-TEST



[PDF] Raisonnement par récurrence

On dit souvent que la récurrence appelle la récurrence Il faut toujours écrire Hn0 dans l'initialisation et Hn+1 dans l'hérédité Cela permet de voir ce que 



[PDF] Cours Terminale S Le raisonnement par récurrence - Dominique Frin

Quelle conjecture peut-on faire sur le nombre de triangles avec n rangées de triangles de base ? b) On peut vérifier que 13 + 23 + 33 = (1 + 2 + 3)2 Cette 

[PDF] raisonnement par récurrence prepa

[PDF] le régime de vichy fiche de révision

[PDF] le régime de vichy résumé

[PDF] démonstration par récurrence d une inégalité

[PDF] oeuvre de molière en 1665

[PDF] moliere 1662

[PDF] moliere 1664

[PDF] moliere 1662 theatre

[PDF] molière 1668

[PDF] moliere 1672

[PDF] george dandin comique de situation

[PDF] séquence l'homme et son rapport au monde les mythes

[PDF] maladie de moliere

[PDF] l'homme et son rapport au monde bac pro revision

[PDF] la chine et le monde depuis 1919 fiche

Année 2007-20081èreSSVT

La démonstration par récurrence

Dans toute la suitenappartientàN.

La démonstrationparrécurrencesertlorsqu"onveut démontrerqu"une propriété,dépendantde n, est vraie pour toutes les valeurs den. On appelle dans ce casPnla propriétéen question. On est ainsi amené à montrer que la propriétéPnest vraiepour toutesles valeursden. P

1?P0?P2?P3?P4?······

Exemple :Prenons un exemple simple pour illustrer le raisonnement par récurrence. On veut montrer par récurrence la propriété : ??pour tout entiernon a : 0+1+2+···+n=n(n+1) 2.??

Pour n"importe quel entiernon appellePnla propriété (à démontrer):??1+2+···+n=n(n+1)

2??. On peut à présent démontrer par récurrence que :??0+1+2+···+n=n(n+1)

2pour tout entiern??.

La démonstration par récurrencese fait en trois étapes : •Initialisation: on vérifie que la propriété est vraie pour la première valeur den(souvent n=0).

On vérifie donc queP0est vraie.

P 1?

P0vraieP2?P3?P4?······

Exemple :

•Initialisation: icin=0 doncn(n+1)2=0×(0+1)2=0 et ainsi la propriétéP0est vraie. •Hérédité:

on démontre la propriété suivante :??si la propriété est vraie pour un certain rangk(n"importe lequel)

alors la propriété est vraie pour le rang juste après c"est-à-dire pour le rangk+1??.

PkvraiePk+1?transmission

La propriété se transmet de la valeur de l"indicekà la valeur de l"indicek+1.

On dit que la propriété est

héréditaire.

Page 1/2

Année 2007-20081èreSSVT

Exemple :•Transmission:

Sila propriétéPkest vraie(pour un certain k)montrons qu"alorsPk+1est vraie aussi . On sait (par hypothèse de récurrence) : 0+1+2+···+k=k(k+1) 2. On veut démontrer que : 0+1+2+···+(k+1)=(k+1)?(k+1)+1?

2=(k+1)(k+2)2.

On a 0+1+2+···+(k+1)=0+1+2+···+k+(k+1) . Par ailleurs d"après l"hypothèse de récurrence 0+1+2+···+k=k(k+1)

2donc 0+1+2+···+(k+1)=k(k+1)2+(k+1) .

On a ensuite

k(k+1)

2+(k+1)=k(k+1)2+2(k+1)2=(k+1)(k+2)2et donc il suit que

0+1+2+···+(k+1)=(k+1)(k+2)

2.

La propriétéPk+1est ainsi vraie.

On a donc bien montré que si

Pkest vraie alorsPk+1l"est aussi.

•Conclusion:

les deux étapes précédentes permettent de conclure que la propriété est vraie pour tous les entiersn.

En effet la propriétéest vraie au rang 0 donc avec l"étape d"hérédité elle devient vraie au rang 1. On peut

alors réappliquer l"étape d"hérédité au rang 1 et la propriété devient vraie au rang 2.

En réappliquant l"étape d"hérédité de proche de proche, il suit que la propriété est vraie pour tous les

entiersn.

P1vraieP0vraieP2?transmission

P

3?P4?······

P1vraieP0vraieP2vraieP3vraie

P4?transmission

Exemple :

•Conclusion: On a ainsi pour tout entiernl"égalité : 0+1+2+···+n=n(n+1)2.

Page 2/2

quotesdbs_dbs35.pdfusesText_40