[PDF] [PDF] électrostatique - Hugues SILA

Exercices corrigés : Electromagnétisme-Electrostatique-Electricité- Electronique 7 Exercice 2 : champ électromagnétique rayonné par un dipôle oscillant



Previous PDF Next PDF





[PDF] EXERCICES DELECTROSTATIQUE ENONCES - Fabrice Sincère

Exercice 1 : Champ électrostatique crée par des charges Trois charges ponctuelles +q, -q et -q sont placées aux sommets d'un triangle équilatéral de côté a



[PDF] Electricité Cours Exercices et problèmes corrigés Pr : M CHAFIK EL

Exercices et problèmes corrigés b- Système de conducteur en équilibre électrostatique 38 III- CALCUL INDIRECT DU CHAMP ELECTROSTATIQUE 80



[PDF] Cours et exercices corrigés

26 Solutions des exercices 3 1 Chapitre 2 : Champ électrostatique • 1 Définition du champélectrostatique 45 2 Champ électrostatiquecréé par une charge 



[PDF] électrostatique - Hugues SILA

Exercices corrigés : Electromagnétisme-Electrostatique-Electricité- Electronique 7 Exercice 2 : champ électromagnétique rayonné par un dipôle oscillant



[PDF] Electrostatique-électrocinétique

9 2 3 2 Ensemble de charges ponctuelles : potentiel électrostatique CORRIGé q1 et q3 ont le même signe, dans ce cas 1 F est répulsive q2 et q3 ont un 



[PDF] ÉLECTROSTATIQUE Exercices de TD

Calculer la valeur du champ électrostatique généré par ces trois charges ponctuelles en un point M situé l'axe (Oz) 3 Justifier que le module du champ 



[PDF] Filière : SMP S2; TD Électrostatique série n°2 - FPO

Corrigé de l'exercice 3 : On a deux cylindres de rayon respectivement et et d' extension infinie La meilleure base pour exprimer le champ électrostatique est la  



[PDF] Electrostatique : révisions de Sup Conducteurs en - Unisciel

Electrostatique : révisions de Sup Conducteurs en équilibre électrostatique I) Electrostatique ; révisions de sup : 1 – Loi de Coulomb, calculs direct du champ et 



[PDF] TD 1 Électrostatique - IPCMS - Université de Strasbourg

Électrostatique — Rappels et compléments Exercice 1 1 (a) Douze charges électriques identiques de charge q sont situées aux coins d'un dodécagone

[PDF] cours electrostatique pdf s2

[PDF] pourquoi voter est un devoir

[PDF] vecteur colinéaire def

[PDF] vecteur colinéaire dans l'espace

[PDF] vecteur perpendiculaire

[PDF] exemple fiche grcf bts ag

[PDF] fiche descriptive appel d'offre

[PDF] fiche grcf accueil information et conseil

[PDF] fiche grcf commande fournisseur

[PDF] fiche grcf passation de commande

[PDF] fiche grcf bts ag appel d'offre

[PDF] fiche grcf facture client

[PDF] element de gymnastique au sol

[PDF] projet de cycle gymnastique niveau 1

[PDF] atelier gymnastique artistique

PREFACE

Cet ouvrage d"exercices corrigés d"ElectromagnétismeElectromagnétismeElectromagnétismeElectromagnétisme----ElectrostatiqueElectrostatiqueElectrostatiqueElectrostatique----

ElectricitéElectricitéElectricitéElectricité---- Electronique Electronique Electronique Electronique est pratiquement destiné aux élèves des classes

préparatoires et aux étudiants de deuxieme année de Mathématiques, physique et chimie .Il propose des problèmes originaux ou classiques, souvent extraits des sujets de concours.

Chaque exercice comprend :

Des énoncés intégrant chacun un titre permettant des se faire une idée sur le sujet traité avec parfois une référence à une épreuve de concours .Les questions sont échelonnées et progressives pour aider l"étudiant dans sa recherche. Des corrigés détaillés de tous les execices permettront aux étudiants de bien maitriser la notion traitée. Je n"insisterai jamais sur le bon mode d"emploi de ce livre d"exercices corrigés.Il serait parfaitement vain de se contenter de lire, même très attentivement, la solution à la suite de l"enoncé.On apprend pas à faire du velo dans un manuel ! Ce n"est qu"après avoir cherché longuement chaque question avec ou sans succès, mais du moins avec persévérance que la lecture du corrigé pourra devenir fructueux et profitable. Avec ce livre, j"espère mettre à la disposition des étudiants un ensemble de d"exercices et de problèmes leur permettant d"acquérir des méthodes et des pratiques qu"ils pourront reinvestir en d"autres circonstances .Je leur souhaite de reussir les concours et examens qu"ils préparent avec courage

Un élève qui ne réussit pas a appris à ne pas apprendre, c"est -à- dire à ne pas changer .Il a donc appris.il a

appris quelque chose de très difficile : à resister à l"aptitude innée de s"adapter. Hélène Trorné-Fabre, japprends, donc je suis

DU MEME AUTEUR

DU MEME AUTEURDU MEME AUTEURDU MEME AUTEUR

· Exercices corrigExercices corrigExercices corrigExercices corrigéééés de mathematiques financieress de mathematiques financieress de mathematiques financieress de mathematiques financieres bts banquebts banquebts banquebts banque

· Comment reussir a ses examens et concoursComment reussir a ses examens et concoursComment reussir a ses examens et concoursComment reussir a ses examens et concours ????

· Exerces corrigExerces corrigExerces corrigExerces corrigéééés de probabilite classe de terminales de probabilite classe de terminales de probabilite classe de terminales de probabilite classe de terminale

· Epreuves corrigEpreuves corrigEpreuves corrigEpreuves corrigéééés concours d"entree a l"ecole nationale superieure s concours d"entree a l"ecole nationale superieure s concours d"entree a l"ecole nationale superieure s concours d"entree a l"ecole nationale superieure

polytechnique yaounde polytechnique yaoundepolytechnique yaoundepolytechnique yaounde

· Exercices cExercices cExercices cExercices corrigorrigorrigorrigéééés s s s de mde mde mde méééécaniquecaniquecaniquecanique premier cyclepremier cyclepremier cyclepremier cycle---- lllliiiicencecencecencecence

· Exercices corigExercices corigExercices corigExercices corigéééés d"optique s d"optique s d"optique s d"optique

· Exercices corrigExercices corrigExercices corrigExercices corrigéééés de thermodys de thermodys de thermodys de thermodynamique namique namique namique premier cyclepremier cyclepremier cyclepremier cycle---- lllliiiicencecencecencecence

EXERCICE1 : champ électromagnétique dans le vide.

Les équations de Maxwell dans le vide

On donne les équations de Maxwell que doivent vérifier respectivement le vecteur champ électrique

E et le vecteur champ magnétique B en notant r la densité volumique de charge et j le vecteur densité de courant. (e

0 et μ0 étant respectivement la permittivité et la perméabilité du vide : μ0 e0 c2 = 1)

Les vecteurs sont écrits en gras et en bleu.

On repère tout point M de l"espace à l"aide d"un repère ( O, ex, ey, ez)

Montrer qu"une onde plane rectiligne

E= E0 cos(wwwwt-kx)ey peut se propager dans le vide ; E0 est l"amplitude constante.

Elle doit vérifier l"équation de propagation, obtenue à partir des équations de Maxwell :

d

2Ey/dy2 = d2Ey/dz2 = 0 ; dEy/dx = kE0 sin(wt-kx) ; d2Ey/dx2 = -k2E0 cos(wt-kx) = - k2Ey.

dE y/dt = -wE0 sin(wt-kx) ; d2Ey/dt2 =-w2E0 cos(wt-kx) = -w2Ey. par suite : - k

2Ey- (-w2/ c2E y) 0 ; relation vérifiée si k = wwww/c.

Quelle est la direction de propagation ?

Direction de propagation : l"axe x"x

Quelle est la Valeur de la norme du vecteur d"onde k ?

Valeur de la norme du vecteur d"onde

k : k = w/c Donner l"Expression du champ magnétique associé :

Expression du champ magnétique associé

B=E0 / c cos(wt-kx)ez ; B, E, ex forment un trièdre direct ( figure ci-dessous)

On définit le vecteur de Pyonting

par P= 1/m0[E^ B] Donner le sens et la vitesse de propagation de l"énergie ,le flus du vecteur de poynting et son

P = E^B / m0 avec B = u^ E /c et E = cB^ u

d"où : P = cB²/ m0 u = ce0 E² u = ce0E20 cos2(wt-kx)u L"énergie se propage dans le sens de l"onde à la vitesse c.

Le flux du vecteur de Poynting à travers une surface S est égale à l"énergie contenue dans un cylindre

de section S et de longueur c ( énergie transmise à travers une surface par unité de temps)

F = PS=ce

0 E²S

Son unité est W m

-2.

Quelle est la Valeur moyenne de

sur une période en fonction de E0, eeee0 et c vitesse de la lumière dans le vide.

Valeur moyenne de

sur une période en fonction de E0, e0 et c, vitesse de la lumière dans le vide.

Un faisceau lase polarisé rectilignement est assimilable à une onde plane de section 1 mm². Pour une

puissance transportée P

0 = 100 mW,

calcul de l"amplitude du champ électrique correspondant : P

0 = ½e0cE02S ; E02 =2P0 / ( e0cS) avec e0 =1/(m0c2)

E

02 =2P0 m0c / S avec P0 =0,1 W ; m0= 4 p 10-7 ; c = 3,00 108 m/s ; S= 10-6 m².

E

02 =2*0,1*4 p 10-7 *3,00 108 / 10-6 =7,54 107 ; E0 =8,7 103 V/m.

On définit une onde

E= E0 cos(wwwwt-kx)ey + E0 sin(wwwwt-kx)ez.

Cette onde est dite "circulaire ": l"amplitude E

0 est constante ; le vecteur E tourne à vitesse constante w

autour de l"axe Ox.

Donner le champ

B et vecteur de Poynting P associé :

B = ex ^ E /c

B =E0 /c [cos(wt-kx)ex ^ey+ sin(wt-kx)ex ^ez ]

B =E0 /c [cos(wt-kx)ez + sin(wt-kx)(-ey) ]

P = E^B / m0

P =E20 / (cm0)[ cos(wt-kx)ey + sin(wt-kx)ez]^[cos(wt-kx)ez + sin(wt-kx)(-ey)] P =E20 / (cm0)[cos2(wt-kx)ex+sin2(wt-kx)ex] =E20 / (cm0)ex =e0cE02ex

Le vecteur de Poynting

P est constant : il ne dépend ni de x, ni du temps. Exercice 2 : champ électromagnétique rayonné par un dipôle oscillant.

Les vecteurs sont écrits en gras et en bleu.

Pour r=OM >> l=2pc/w, le champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire p(t) = p0 cos (wt) ez, placé en un point O est tel que : E q= -w2 sinq/( 4pe0rc2) p0 cos(w(t-r/c)) ; Bj= Eq /c.

Les autres composantes sont négligeables.

L"onde est elle plane ?

Le dipôle ( deux charges +q et - q situées à la distance d ) est équivalent à un élément de courant

ldq/dt ez = dp/dt ez. Tout plan contenant l"axe Oz est plan de symétrie. Le champ électrique est dans le plan défini par Oz et eqqqq.

Le champ magnétique créé

Bjjjj est perpendiculaire au plan contenant le champ électrique.

Les amplitudes E

q et Bj dépendent de r et de q : en conséquence l"onde n"est pas plane.

L"onde est elle quasi-plane ?

Le rapport des amplitudes E

q / Bj= c est constant et de plus les champs Bjjjj et Eqqqq sont perpendiculaires et transversaux : l"onde est dite " quasi-plane".

Définir le vecteur de Pyonting

P = E^B / m0 avec E = -w2 sinq/( 4pe0rc2) p0 cos(w(t-r/c)) eqqqq =Eqeqqqq B = Eq /c ejjjj. P =Eq eqqqq ^Eq /(cm0) ejjjj = E2q/(cm0)eqqqq ^ejjjj =E2q/(cm0)er . P =[w2 sinq/( 4pe0rc2) p0 cos(w(t-r/c))]2 /(cm0) er avec 1/(cm0) = e0c

P = w4 sin2q/( 16p2e0r2c3) p20 cos2(w(t-r/c))er .

Calculer la Valeur moyenne de

sur une période : Calculer L"énergie moyenne rayonnée par unité de temps à travers la sphère de tayon r expression de la surface élémentaire en coordonnées sphériques : dS= r

2 sinq djdq.

L"énergie moyenne rayonnée par unité de temps à travers la sphère de tayon r, c"est à dire le flux de

P à travers la surface de la sphère de rayon r vaut :

Primitive de

sin3q : sin

3q = sinq* sin2q = sinq*(1-cos2q ) = sinq-sinqcos2q.

primitive de sin q : -cos q dont la valeur entre 0 et p est : 2. primitive de -sinq cos2q : u = cosq ; u "= - sinq ; -sinq cos2q = u2u" d"où la primitive : 1/3u3 = 1/3cos3q. la valeur de 1/3cos

3q entre 0 et p est : -2/3

Exercice 3

: rayonnement de l"électron dans le modèle de

Thomson

Les vecteurs sont écrits en gras et en bleu.

L"atome d"hydrogène est considéré comme un double dipôle oscillant appliqué en O : p x=p0cos(wt) ; p y=p0sin(wt). Il rayonne un champ électromagnétique. Donner l"expression du champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire py(t) = p0 sin (wwwwt) ey, placé en un point O. Donner l"expression du champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire py(t) = p0 sin (wwwwt) ey, placé en un point O.

Conclure

Shématisons les composantes du champ E associé aux deux dipôles en un point M du plan (Oxy). M

repéré par les coordonnées polaires r et a. Pour r=OM >> l=2pc/w, le champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire px(t) = p0 cos (wt) ex, placé en un point O est tel que :

Ex= -w2 sina/( 4pe0rc2) p0 cos(w(t-r/c))eaaaa.

Le champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire py(t) = p0 sin (wt) ey, placé en un point O est tel que : Ey= -w2 cosa/( 4pe0rc2) p0 sin(w(t-r/c))(-eaaaa) = w2 cosa/( 4pe0rc2) p0 sin(w(t-r/c))eaaaa. par suite : E=[ -w2 sina/( 4pe0rc2) p0 cos(w(t-r/c)) + w2 cosa/( 4pe0rc2) p0 sin(w(t-r/c))]eaaaa. E=w2p0 /( 4pe0rc2) [ - sina cos(w(t-r/c)) +cosa sin(w(t-r/c))]eaaaa. finalement

E=w2p0 /( 4pe0rc2) sin[w(t-r/c)-a]eaaaa.

Exercice 4 : courant alternatif sinusoïdal

a.Rappel de cours

U volt valeur efficace

w rads-1 pulsation w=2pf f hertz fréquence, inverse de la période

T s période

Yrad phase

On représente une grandeur sinusoïdale par

· un vecteur de norme U formant l"angle

Y avec l"axe horizontal .

· un nombre complexe de module U, d"argument Y. (j²=-1) fonction sinusoidale dérivée primitive fonction sinusoidale de même pulsation en avance de p/2 , de valeur efficace

Uw en

retard de p/2 , de valeur efficace U /w jwU notation complexe U /jw p

U notation de Laplace U / p

impédances Z ohm ; admitance Y=1/Z vecteur notation complexe notation de Laplace résistance R R condensateurquotesdbs_dbs35.pdfusesText_40