[PDF] [PDF] Relations binaires Relations déquivalence et d - Lycée dAdultes

20 août 2017 · On appelle classe d'équivalence d'un élément x de E, l'ensemble C(x) des élé- ments de E en relation avec x par 勿 : C(x) = {y ∈ E, y 勿 x}



Previous PDF Next PDF





[PDF] 1 Relations binaires 2 Relations déquivalence 3 Relations dordre

même classe d'équivalence Théorème Une relation d'équivalence R sur un ensemble E définit une partition de E dont les éléments sont les 



[PDF] Chapitre 4 - Table des mati`eres

relation d'équivalence R sur un ensemble E permet de considérer comme appelle classe d'équivalence de x modulo R, le sous-ensemble de E formé des 



[PDF] Relations binaires Relations déquivalence et d - Lycée dAdultes

20 août 2017 · On appelle classe d'équivalence d'un élément x de E, l'ensemble C(x) des élé- ments de E en relation avec x par 勿 : C(x) = {y ∈ E, y 勿 x}



[PDF] Corrigé du TD no 7

Par définition, l'ensemble quotient P(R)/ ∼ est l'ensemble des classes d' équivalence pour la relation ∼ Pour identifier cet ensemble, on peut choisir un 



[PDF] Relations déquivalence

1 Introduction La notion de relation d'équivalence est un outil merveilleux Elle permet tout d'abord de réunir des objets "équivalents" dans une même classe



[PDF] Relations déquivalence et ensemble quotient - Les pages perso du

7 mar 2018 · sur A si R est reflexive, symétrique et transitive 2 1 0 2 Exemples de relations d'équivalence 2 1 0 3 Classes d'équivalence



[PDF] RELATION BINAIRE - Licence de mathématiques Lyon 1

2 Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient Allez à : Correction exercice 1 : Exercice 2 : 1 Montrer que la relation de 



[PDF] RELATIONS BINAIRES - Christophe Bertault

Théorème (Classes d'équivalence d'une relation d'équivalence, ensemble quotient) Soit ∼ une relation d'équiva- lence sur E • Pour tout x ∈ E, l'ensemble y 



[PDF] Relations déquivalence - Baptiste Calmès

Relations d'équivalence Baptiste Calmès 2 février 2021 Table des matières 1 Définition 2 2 Classes d'équivalence 3 3 Ensemble quotient 4 4 Théorème 

[PDF] exo7 relation binaire

[PDF] liste des verbes d'action

[PDF] liste des verbes d'état cm2

[PDF] exercice sur les verbes d'état et d'action cm2

[PDF] les verbes d'action pdf

[PDF] film éthique et culture religieuse

[PDF] les verbes d'état pdf

[PDF] tous les verbes d'état

[PDF] liste des verbes attributifs

[PDF] surclassement pop corn c'est quoi

[PDF] upload file magazines gaumont 262 web

[PDF] exercice de maths rapport et proportion

[PDF] gaumont pathé

[PDF] rapport entre deux nombres

[PDF] montrez que la productivité globale des facteurs est source de croissance économique.

[PDF] Relations binaires Relations déquivalence et d  - Lycée dAdultes DERNIÈRE IMPRESSION LE20 août 2017 à 15:44

Relations binaires. Relations

d"équivalence et d"ordre

Table des matières

1 Généralités2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Compatibilité d"une relation avec une loi interne. . . . . . . . . . . 2

1.3 Qualité d"une relation binaire. . . . . . . . . . . . . . . . . . . . . . 3

1.4 Relation totale ou partielle. . . . . . . . . . . . . . . . . . . . . . . . 3

2 Relation d"équivalence4

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Classe d"équivalence. Ensemble quotient. . . . . . . . . . . . . . . 4

3 Relation d"ordre5

3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Relation stricte associée à une relation d"ordre. . . . . . . . . . . . 6

4 Éléments fondamentaux d"un ensemble ordonné7

4.1 Majorant, minorant. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Plus grand et plus petit élément. . . . . . . . . . . . . . . . . . . . . 7

4.3 Borne supérieure et borne inférieur. . . . . . . . . . . . . . . . . . . 8

PAUL MILAN1CPGE-L1 -ALGÈBRE

1. GÉNÉRALITÉS

1 Généralités

En mathématiques, on cherche souvent à comparer deux éléments d"un ensemble ou la propriété que deux éléments d"un ensemble sont susceptibles d"avoir.

1.1 Définition

Définition 1 :Une relation binaireRdéfinie sur un ensembleEest au choix : •une propriété qui relie ou non deux élémentsxetydeE. On notexRypour dire que l"élémentxest en relation avecy

•une partie deE×E. On notexRysi(x,y)?R

?Pour un couple(x,y)?= (y,x)donc on fera la différence entrexRyetyRx. Par exemple siRest la relation < surR: si l"on ax », "?». •La relation surZ" | » :a|bsi "adiviseb». •La relation surZ"≡[n]» :a≡b[n]si queaest congru àbmodulon. •La relation surP(E)"?» :A?Bsi queAest inclus dansB. •La relation sur les droites du plan " //» :d//d?si la droitedest parallèle àd?. •La relation sur les droites du plan "?» :d?d?si la droitedest perpendicu- laire àd?. Remarque :On peut représenter une relation binaire par un graphe ou un dia- gramme sagittal (du latinsagitta: flèche). Par exemple la relation?sur [[0,3]] 01 2 3

1.2 Compatibilité d"une relation avec une loi interne

Définition 2 :SoientRune relation binaire surE. La relationRest compatible avec la loi de composition interne?surEsi : (aRbetcRd)?(a?c)R(b?d)

Exemples :

•La loi?surRest compatible avec l"addition mais pas avec la multiplication. •La loi≡[n]surZest compatible avec l"addition et la multiplication.

PAUL MILAN2CPGE L1 -ALGÈBRE

1. GÉNÉRALITÉS

1.3 Qualité d"une relation binaire

Définition 3 :SoitRune relation binaire surE.

•On dit queRest réflexive si :?x?E,xRx

•On dit queRest symétrique si :?x,y?E,xRy?yRx •On dit queRest antisymétrique si :?x,y?E,(xRyetyRx)?x=y •On dit queRest transitive si :?x,y,z?E,(xRyetyRz)?xRz

Exemples :

•La relation d"égalité=surEest réflexive, symétrique, antisymétrique et tran- sitive. •Les relations?et?surRsont réflexives, antisymétrique et transitives. Elles ne sont pas symétriques. •Les relationsurRsont antisymétriques et transitives. Elles ne sont ni réflexives, ni symétriques. •La relation de divisibilité|surZest réflexive et transitive. Elle n"est ni symé- trique, ni antisymétrique : (2|(-2)et-2|2 mais-2?=2) •La relation≡[n]de congruence modulonsurZest réflexive, symétrique et transitive. Elle n"est pas antisymétrique.

1.4 Relation totale ou partielle

Définition 4 :SoitRune relation binaire surE.

•On dit quexetydeEsont comparable parRsi :xRyouyRx. •On dit que la relationRest totale si deux éléments quelconques deEsont comparable :?x,y?E,xRyouyRx •On dit que la relationRest partielle dans le cas contraire.

Exemple :

•Les relations?et?surRsont totales maissont partielles car on ne peut comparer deux éléments identiques. •La relation de divisibilité|surZ?est partielle : on ne peut comparer 3 et 5 car l"un des deux n"est pas un diviseur de l"autre.

PAUL MILAN3CPGE L1 -ALGÈBRE

2. RELATION D"ÉQUIVALENCE

2 Relation d"équivalence

2.1 Définition

Définition 5 :SoitRune relation binaire surE.

On dit queRest une relation d"équivalence surEsiRest réflexive, symétrique et transitive. Remarque :Une relation d"équivalence est notée parfois≂ Une relation d"équivalence permet de mettre en relation des éléments qui sont similaires pour une certaine propriété.

Exemples :

•La relation≡[n]surZest une relation d"équivalence. On vérifie facilement qu"elle est réflexive, symétrique et transitive. •Soitα?R. Une autre relation≡[α]surRest une relation d"équivalence : x≡y[α]? ?k?Z,x=y+kα. - Réflexivité :a=a+0×αdonca≡a[α] - Symétrie :a≡b[α]?a=b+kα?b=a+ (-k)α?b≡a[α] - Transitivité : (a≡b[α]etb≡c[α])?(a=b+kαetb=c+k?α)? a=k?α+kα= (k?+k)α?a≡c[α]

2.2 Classe d"équivalence. Ensemble quotient

Théorème 1 :SoitRune loi d"équivalence surE. •On appelle classe d"équivalence d"un élémentxdeE, l"ensembleC(x)des élé- ments deEen relation avecxparR:

C(x) ={y?E,yRx}

•L"ensemble des classes d"équivalence pourRforment une partition deE: leur réunion formeEet sont deux à deux disjointes. •L"ensemble des classes d"équivalence deEpourRest appelé l"ensemble quo- tient deEparRnotéE/R Remarque :Toute classe d"équivalence peut être exprimée en français sous la forme "avoir le même [... ]». Par exemple "avoir le même reste dans la division parn» dansZ. Notation usuelle pour la classe d"équivalence dex: xoux

Pour la relation≡[3]

Troisclassesd"équivalence:?

0 ,1 ,2?

correspondant aux trois restes dans la division par 3

Son ensemble quotient se note :Z/3Z0

reste 01 reste 1

2 reste 2

Z

PAUL MILAN4CPGE L1 -ALGÈBRE

3. RELATION D"ORDRE

L"ensemble quotientE/Rest donc un ensemble d"ensembles inclus dansP(E) Démonstration :Montrons queE/Rforme une partition deE.

Notons

xla classe d"équivalence dexpourR. •?x?E,x?xcar réflexivitéxRxon en déduit queE=? x?Ex.

•Montrons que six∩y?=∅alorsx=y.

z? x∩y??zRx zRy??Par symétrie et transitivité xRy?x=y

Exemple :

Un bipoint (A,B) est un couple de

points du plan.

On définit la relationR(équipollence)

telle que : (A,B)R(C,D) si les segments [AD] et [BC] ont même milieu. AB CD I

Rest une relation d"équivalence car :

•[AB] et [BA] ont même milieu donc (A,B)R(A,B). •(A,B)R(C,D)?m[AD] =m[BC]?m[CB] =m[DA]?(C,D)R(A,B) ?(A,B)R(C,D) (C,D)R(E,F)??m[AD] =m[BC] m[CF] =m[DE]??ABDC et CDFEparallélogrammes? ?(AB)//(CD)//(EF)

AB=CD=CF??ABFE parallélogramme

quotesdbs_dbs2.pdfusesText_2