[PDF] [PDF] ChemCam Fact Sheet

ChemCam uses a laser beam to remove dust from rock surfaces, enabling remote sensing unhindered by the ubiquitous Mars dust The suite combines LIBS 



Previous PDF Next PDF





De chemcam à supercam : Lapport de la LIBS pour le - Photoniques

de tirs laser effectué par ChemCam et les spectres LIBS correspondant à chaque point LE ROVER PERSEVERANCE POUR LA MISSION MARS 2020



[PDF] La Libs : les applications dun laser danalyse, des systèmes - CEA

20 jui 2014 · La spectroscopie de plasma induit par laser, ou LIBS (acronyme anglais Le développement de l'instrument ChemCam, qui équipe le Rover 



[PDF] PDF :14 - SMARTCOURS

Le document 1 nous indique que le laser « émet un rayonnement à 1067 nm » Le domaine du visible est compris entre 400 et 800 nm Le laser de ChemCam n'  



[PDF] ChemCam Instrument - Lunar and Planetary Institute

ChemCam, short for chemistry and camera, uses a technique called Laser- Induced Breakdown Spectroscopy (LIBS) to determine the compositions of rocks and 



[PDF] Non spé - Physique Chimie

ChemCam met en oeuvre la technique LIBS (Laser Induced Breakdown Spectroscopy) d'analyse Son laser pulsé émet un rayonnement à 1067 nm délivrant



[PDF] ChemCam Fact Sheet

ChemCam uses a laser beam to remove dust from rock surfaces, enabling remote sensing unhindered by the ubiquitous Mars dust The suite combines LIBS 



[PDF] Sujet officiel complet du bac S Physique-Chimie - Sujet de bac

Le laser de ChemCam Document 1 Principe de fonctionnement de ChemCam ChemCam met en œuvre la technique LlBS (Laser Induced Breakdown 



[PDF] Bac S 2015 Métropole MICRO-TEXTURATION DE SURFACE PAR

Montrer que les caractéristiques du faisceau laser utilisé par ChemCam permettent bien d'obtenir une irradiance suffisante pour créer un plasma 2 Test de 



[PDF] 2014-11-NelleCaledo-Exo1-Correction-ChemCam-5pts

1 2 D'après le document 1, le laser émet un rayonnement de longueur d'onde égale à 1067 nm, donc supérieure à 800 nm : 



[PDF] EDUC_54pdf - CNES

L'instrument ChemCam analysera par spectrométrie la lumière d'un plasma issue d'un tir laser sur les roches martiennes, une manière de rendre plus fun la 

[PDF] le latin pour les nuls pdf

[PDF] le lecteur d'oeuvre de fiction fuit il la réalité reponse

[PDF] le lecteur livre

[PDF] Le lecteur s'identifie t'il au personnage masculin ou garde t'il une distance critique par rapport ? lui (C'est pour demain s'

[PDF] le léviathan définition

[PDF] le levier définition

[PDF] Le lexique de l'éloge : QCM

[PDF] Le lexique de la parole et du discours

[PDF] le lexique de théatre antigone

[PDF] le lexique définition

[PDF] Le lexique du blâme : QCM

[PDF] le lexique du théatre exercice

[PDF] le lexique mélioratif et péjoratif cours

[PDF] le libertinage au coeur de l'intrigue

[PDF] le lien ci dessous est l'exercice en question! pouvais vous m'aider ? le réussir s'il vous plaît Merci d'avance pour aide :)

ChemCamChemCam

for for ChemistryChemistryandandMicroMicro--ImagingImagingProposalProposal to MSLto MSL

July 2004

July 2004

P.I. : Roger C.

P.I. : Roger C.

WiensWiens

(LANL)(LANL)

Elemental Abundances from Laser-

Induced Breakdown Spectroscopy (LIBS)Most Detailed Remote Images Ever from the Remote Micro-Imager (RMI) SiMg AlBa

Science ObjectivesScience Objectives

(1) Characterize the geology of the landing region, (1) Characterize the geology of the landing region,

(2) Investigate planetary processes relevant to past habitabilit (2) Investigate planetary processes relevant to past habitability, y, (3) Assess the biological potential of a target environment, (3) Assess the biological potential of a target environment, (4) Check for toxic materials. (4) Check for toxic materials.

As a remote sensing instrument,

As a remote sensing instrument, ChemCamChemCam''ssprimary objective is to rapidly characterize primary objective is to rapidly characterize

rocks and soils, and to identify samples of greatest interest fo

rocks and soils, and to identify samples of greatest interest for further investigation by the r further investigation by the

contact and analytical laboratory instrument contact and analytical laboratory instruments.s.

Science TeamScience Team::

N. Bridges

N. BridgesJPLJPLS. MauriceS. MauriceCESRCESR

B. Clark

B. ClarkLMCOLMCOC. McKayC. McKayAmesAmes

D.

D. CremersCremersLANLLANLH. NewsomH. NewsomUNMUNM

K. K. HerkenhoffHerkenhoffUSGSUSGSF. F. PoitrassonPoitrassonLMTGLMTG

L. Kirkland

L. KirklandLPILPIV. V. SautterSautterMNHNMNHN

N. N. MangoldMangoldIDESIDESL. L. dd''UstonUstonCESRCESR G. G. ManhManhèèssIPGPIPGPD. D. VanimanVanimanLANLLANL P.

P. MauchienMauchienCEACEAR. R. WiensWiensLANLLANL

450 m450 m

Depth Profile

Dust Removal

MSL Proposal ChemCam

Page FS-1 Fact Sheet

Laser-Induced Breakdown Spectrograph

LIBS focuses powerful laser pulses onto a

sample, causing ablation of atoms in excited states, which emit light. LIBS determines elemental compositions by spectrally resolving and measuring the emission lines from the ablated material.

LIBS has the following characteristics:

No sample preparation required

Rapid analysis technique

Operates at a distance (2-13 m)

Removes dust from surfaces

Provides depth profiles

Detects all elements

10 ppm detection limits for some elements

Laser requires only 3 Watts of power

LIBS has been applied for over 20 years; its

use in laboratories and industry has increased

rapidly in recent years.ChemCam uses a laser beam to remove dust from rock surfaces, enabling remote sensing

unhindered by the ubiquitous Mars dust. The suite combines LIBS elemental analyses with

a remote micro-imager (RMI) yielding the highest resolution images 2 m from the rover.Remote Micro-Imager

The RMI will provide very high resolution

images of targets. Its pixel field of view is

21-22 µrad, much finer than any remote

camera that has operated on Mars. Its effective resolution exceeds that of MER

Pancam by a factor of 5 to 10. Resolution in

the near-field is within a factor of 2-3 of

MER MI (at closest-focus distance of 2 m for

RMI vs. 6 cm for MI), but still sufficient to

see many diagnostic sedimentary structures and other features at the sub-millimeter scale. Sub-meter-sized objects at the Mars horizon will be visible.

Above is a MER MI image at a resolution

simulating RMI at a distance of 3m. Only half of the RMI field of view is illustrated.

NASA/JPL/Cornell

MSL Proposal ChemCam

Page FS-2 Fact Sheet

LIBS soil spectrum recorded at a distance of 5.3 m shows fifteen elements ranging in abun- dance down to a few ppm. The three modules correspond to the ChemCam spectrographs.

ChemCam Science Objectives

ChemCam addresses four of the five MSL

mission objectives, including (1) characterize the geology of the landing region, (2) investi- gate planetary processes relevant to past habit- ability, (3) assess the biological potential of a target environment, and (4) look for toxic mat- erials. As a remote sensing instrument, Chem-

Cam's primary objective is to rapidly charac-

terize rocks and soils, and to identify samples of greatest interest for further investigation by contact and analytical laboratory instruments.

ChemCam's science and operational

investigations are as follows:

1 Rapid remote rock identification (ID)

2 Complement other techniques for rock

ID in cases of dust and weathering

3 Soil and pebble composition surveys

4 Quantitative analyses, including trace

elements, to support science objectives

5 Detection of hydrated minerals

6 Rapid remote ID of surface ices

7 Depth profiles of rock weathering coats

8 Geomorphology and imaging science

9 Remote analysis of inaccessible rocks

10Assist arm and drill or corer sampling

11Remote ID of organic materials

12Check for abundances of elements above

hazardous limits for humans

ChemCam Analysis Sequence

The flow chart shows a typical analysis

sequence. After target acquisition by the rover mast, the telescope is focused and the target is micro-imaged. A burst of up to 75 laser shots (30 mJ) is fired at a 1 mm spot on the target.

The spectrum from each spark is collected.

Deeper analyses utilize additional laser bursts.

A typical analysis takes 6 min. and 0.7 W-

hr, compared with up to 3 sols for analogous dust-free analyses requiring sample contact.

MSL Proposal ChemCam

Page FS-3 Fact Sheet

12.0 Mb/solData Volume

8904 ccVolume

5.62 kg (+cable)Mass

Overall

0.10 - 0.44MTF at Nyquist

2 ms - 8 s

75 msExposure range

nominal

800-1000 nmWavelength range

3.9 W-hr/solPower (6.7 W ave)

80 radSpatial resolution

2 m - infinityRange

100 mm diaAperture

SchmidtOptics design

RMI

250Signal/Noise

Linear, 2048CCDs, # pixels

0.09-0.3 nmResolution

240-800 nmRange

Czerny TurnerDesign

Spectrographs(3)

40 sec/burstRecharge Rate

75 Pulses per Burst

15 HzPulse Rate

1067 nmWavelength

30 mJ/pulsePower

Laser

0.5-1 mm diaAnalysis Spot

~0.4 m/pulse ~0.1 mm/pulseDepth Profile Rate (basalt & sand)

2-13 mRange

LIBS

Instrument Suite Description

As shown in the block diagram, the

suite consists of two boxes: the Mast

Unit contains the telescope, laser,

remote micro-imager (RMI), and front-end electronics, while the Body

Unit contains three spectrographs,

the DPU, power supply, and rover interface. Mast Unit Body Unit DPU

MSL Proposal ChemCam

Page FS-4 Fact Sheet

Objectives for E/PO and New Technology: ChemCam will capture the public imagination like no other instrument. Both the highest resolution images and the innovative laser-gun analyses give high inherent appeal. ChemCam E/PO includes an interactive website that allows the public to view images and analyses along the rover route, teacher training both locally and at AAPT meetings, and public interactions by the nationally distributed team. E/PO is directed by Dr. Stephanie Shipp of the Lunar and Planetary Institute in Houston. Management Overview. ChemCam is developed by Los Alamos National Laboratory (LANL) and CESR in Toulouse, France. LANL has developed a long line of NASA instruments, including for Cassini, Lunar Prospector, Genesis, Mars Odyssey, and DAWN, and the ChemCam management team has direct experience in all of these. The PI, Dr. Roger Wiens, managed three of the Genesis instruments, and delivered these instruments on time and within budget. LANL's no-nonsense approach properly balances science return, cost, and risk. ChemCam utilizes the very close relationship between French Chemcam lead, Dr. Sylvestre Maurice, and LANL, which has

COSTRY$

Phase A/B 1.0M

Phase C/D 4.7M

A-D Reserves 20% 1.2M

NASA TOTAL A-D6.9M

Phase E 5.4M

E Reserves 10% 0.5M

NASA TOTAL $12.8M

CNES Contrib. A-D 3.4M

Schedule

Start 11/04

PDR 10/05

CDR 10/06

Deliver EM 04/07

Deliver FM 02/08

Launch 11/09

Begin Roving 05/10

Mission End 05/12

Project End 03/13

ComponentProviderFlight Heritage

Laser Thales ESA LIDAR project

RMI & Telescope 3D-Plus & CESR Rosetta, Smart-1, others Spectrograph Ocean Optics, Inc. Other OOI spectrographs DPU, Pwr Supply LANL & 3D-Plus Numerous instruments

Integration LANL > 450 flight instruments

Team Leadership LANL Numerous instruments

Prototype Laser

Breadboard Telescope

Spectrograph on

Vibration Table

A dusty Mars needs ChemCam analyses.

resulted in over 30 joint publica- tions. LANL has a State Depart- ment license for joint international development of LIBS for space, and has been collaborating with

CESR for several years. LIBS

instrumentation is CNES' top plan- etary science development priority. Science Requirementsfor LIBS include obtaining major element abundances to ±10%, along with minor and trace element charac- terization (including H,Li,Be,C,N,S), some to as low as 10 ppm.

Data Volume

covers nearly 5,000 LIBS elemental analyses and a similar number of micro-images over the course of one Mars year.

Readiness:RMI uses

flight-heritage imager;

LIBS funded by MIDP

since 1998; field tested; environmental testing of all prototype parts to be complete by time of selection.quotesdbs_dbs46.pdfusesText_46