[PDF] [PDF] Electrochim Electrochimie

Cours de chimie de seconde année P 1 étique des réactions Etude des courbes i-E I ASPECT CINETIQUE DES REACTIONS ELECTROCHIMIQUES



Previous PDF Next PDF





[PDF] Filière sciences de la matière Cours délectrochimie SMC Semestre 5

Tracé du diagramme tension – pH du cuivre – eau à 25°C à partir des potentiels chimiques standards CHAPITRE III : CINETIQUE ELECTROCHIMIQUE I



[PDF] Thermodynamique et cinétique électrochimique - Electrochimie

d'esp`eces en solution au cours de dosages Le coefficient d'activité étant fonction de la force ionique de la solution, la fem EI=0 d'une chaıne électrochimique 



[PDF] ÉLECTROCHIMIE NS - DSFM

L'électrochimie est la branche de la chimie qui étudie l'interconversion chimique Un processus électrochimique est une réaction de produit formé au cours de l'électrolyse 2 La charge de Pièces jointes potentel d'électrode standard pdf



[PDF] (Spécialité: ELECTROCHIMIE) - International Nuclear Information

licence CE cellule électrochimique en téflon pour déterminer entre autres les éner met d'étudier, puis de contrôler l'électrode de mercure au cours de son



[PDF] Électrochimie - Agrégation de chimie

Ces notes sont mises à disposition selon les termes de la Licence Creative La formulation du second principe vue dans le cours de thermodynamiquea doit 



[PDF] Electrochim Electrochimie

Cours de chimie de seconde année P 1 étique des réactions Etude des courbes i-E I ASPECT CINETIQUE DES REACTIONS ELECTROCHIMIQUES



[PDF] Électrochimie

Dans la solution, le courant est assuré par la migration d'ions positifs vers l'anode , d'ions négatifs vers la cathode Référence: bc-1-electrochimie pdf page 2 de 



[PDF] Électrochimie - Numilog

2 4 Expression du potentiel d'électrode à l'équilibre électrochimique : loi de Nernst 42 2 5 Applications nombre d'électrons échangés au cours de la réaction 



[PDF] Cinétique électrochimique - Frédéric Legrand

Licence Creative Commons 1 Cinétique électrochimique 1 Phénomènes électrochimiques 1 a Conducteurs électroniques et ioniques Dans un conducteur 

[PDF] cours electronique analogique pdf

[PDF] cours electronique debutant pdf

[PDF] cours electronique gratuit

[PDF] cours électronique numérique pdf

[PDF] cours electrotechnique bac pro pdf

[PDF] cours electrotechnique et electronique de puissance pdf

[PDF] cours electrotechnique gratuit

[PDF] cours élémentaire de mathématiques supérieures tome 2 pdf

[PDF] cours en ligne dut génie biologique

[PDF] cours en ligne dut gmp

[PDF] cours en ligne l1 lea

[PDF] cours energie interne 1s

[PDF] cours ensa cycle preparatoire

[PDF] cours ensa pdf

[PDF] cours enseignement transversal 1ere sti2d

Illustration de la couche de Nernst /

Cours de chimie de

llustration de la couche de Nernst / L"actualité chimique - janvier 2003

Cours de chimie de seconde année P

janvier 2003 seconde année PSI

) !30%#4 #).%4)15% $%3 2%!#4)/.3 %,%#42/#()-)15%3 ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

ΐȁ ,! 2%!#4)/. %,%#42/#()-)15% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

,! 6)4%33% $% ,! 2%!#4)/. %,%#42/#()-)15% %4 ,! 2%,!4)/. !6%# ,Ȍ).4%.3)4% )ȁ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Δ

!ȁ ,! 2%!#4)/. %45$)%% Δ "ȁ 2%,!4)/. %.42% ,! 6)4%33% 6 %4 ,Ȍ).4%.3)4% Ε #ȁ #/.6%.4)/. 0/52 ,Ȍ).4%.3)4% ) Ε

)) %45$% $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

ΐȁ -/.4!'% %80%2)-%.4!, ! Β %,%#42/$%3ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

"ȁ 3934%-% 2!0)$% ΐΐ #ȁ 3934%-% ,%.4 ΐΑ $ȁ ./4)/. $% 3524%.3)/. %,%#42/#()-)15% ΐΒ %ȁ #/-0/24%-%.4 $)&&%2%.4 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% ΐΖ &ȁ 0!,)%2 $% $)&&53)/. ΐΗ !ȁ !$$)4)6)4% $%3 ).4%.3)4%3 Αΐ "ȁ 02%6)3)/.3 $%3 2%!#4)/.3 ΑΑ

))) %45$% $% ,Ȍ%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

ΐȁ #/.$)4)/. $͒%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

15%,,%3 %30%#%3 3/.4 %,%#42/,93%%3 Ȉ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΗ

Situation du chapitre dans le programme :

Dans la première partie, nous étudions l"allure générale des courbes i-E en distinguant les systèmes dits rapides et les systèmes dits lents. Dans une seconde

partie, les résultats généraux énoncés lors de l"étude des courbes i-E seront appliqués à

l"électrolyse. n e-

ELECTRODE

transfert de charge

électrode

Ox adsorbé

Red adsorbé

Ox désorbé

Red désorbéOx solution

Red solution

REGION PROCHE DE LA

SURFACE DE L"ELECTRODESOLUTION

transfert de matière"double couche" solution

Ox solution

Red solution

SOLUTION

solution e- e- Ox Ox Red réduction

électrode

solution

3®¨³ Ȁ ¨ ώ ȃ ȁ&ȁ£

Ox Red oxydation

Réduction

ȁ&ȁ£xxxxȝ£³ ώ ȃ ȁ&ȁµ

Réduction

Ȁ ¨ ώ £1ȝ£³

Par convention :

Le courant est toujours compté

ELECTRODE ¾¾® SOLUTION

e-e- Ox Red oxydation i > 0 compté positivement dans le sens :

SOLUTION

Ox Red oxydation

Si l"électrode est siège d"une

OXYDATION :

l"électrode fonctionne en dire si elle est le siège d"une les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le sens solution ¾¾® l"intensité correspondant à transfert est positive

Ainsi pour une

oxydation à l"anode : ia > 0

Si l"électrode est siège d"une

REDUCTION :

l"électrode fonctionne en

à-dire si elle est le siège d"une

réduction, des électrons passent de l"électrode vers l"espèce en solution

Ox1 ; la charge dq traversant l"interface

Si l"électrode est siège d"une

l"électrode fonctionne en anode, c"est-à- dire si elle est le siège d"une oxydation, les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le

¾¾® électrode et

l"intensité correspondant à ce transfert est positive. oxydation à l"anode :

Si l"électrode est siège d"une

l"électrode fonctionne en cathode, c"est- dire si elle est le siège d"une , des électrons passent de l"espèce en solution ; la charge dq traversant l"interface e-e- Ox Red réduction Ox Red réduction i < 0 dans le sens électrode ¾¾® solution est négative et l"intensité correspondant à ce transfert est négative : i c < 0.

REM : i = - n.F.dx/dt = - n.F.[dx/dt)

Red - dx/dt)Ox] = - n.F.[vRed - vOx] = - n.F.vRed + n.F. vOx i = - n.F.vRed + n.F. vOx = ic + ia avec : ic = - n.F.vRed < 0 et ia = + n.F. vOx > 0 #/.34!43 Ȁ oxydation de Red réduction de Ox oxydation de Red réduction de Ox

0 ± £Î¥¨¨³¨®Ǿ "

Ox

RedRedOx

ia i / mA

Eéq

hhhhasurtension faible fort courant branche anodique branche cathodique

3¨¦¨¥¨¢ ³¨® Ȁ

E / V surtension faible fort courant branche anodique i / mA hhhh Red Red Ox branche cathodique iC

Eéq

hhhhca ia surtension fortefort courant OxRed branche anodique E / V fort courant d"oxydation fort courant de réduction hhhhchhhhaVa Vc

0®´± ´

$)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% hhhha branches cathodiquesbranche anodique

O2(g)H2O

H2(g)H+

HgFePt

pH = 0

E par rapport à l"ECS

Pt hhhhchhhhc iDc branche anodique i / mA

Eéq

Fe2+Fe3+

Fe2+Fe3+

branche cathodique iDa = kDFe2+.Fe2+ sol iDc = kDFe3+.Fe3+ sol ),,5342!4)/. Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche cathodique i / mA iDc Ag(s) branche anodique

Eéq

AgAg(s)

Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 Ag+ branche anodique Ag+ Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche anodique d"une espèce oxydable soluble ia,l branche cathdique d"une espèce réductrice soluble ic,l %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce branche anodique d"une espèce oxydable insoluble branche cathdique d"une espèce branche cathodique d"une espèce réductrice insoluble %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce oxydable insoluble branche cathodique d"une espèce réductrice insoluble

H2(g)H+

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.%

E2E1 OH2O

Limites du domaine

d"électroactivité dans l"eau compris entre E

1 et E2

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.% %,%#42/$%

O2(g) %,%#42/$% Red1 i / mA i / mA Red1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, $% $%58 #/50,%3 2%$/8

Ox2Red2

Ox1

Ox1Red1

Ox2Red2

E / V i / mA

Red1Ox1

Red2Ox2

E / V ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3

0/4%.4)%, $% $%58 #/50,%3 2%$/8

i1+ i2 i2 i1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 Red2

Ox1Red1

E1E2 ia2 i c1 = - ia2 Ox2 ia2 i c1 = - ia2

Red2Ox2

Ox1Red1

E1 E2 i / mA ia2 = 0 i c1 = - ia2 = 0

Ox1Red1

Red2Ox2

E2 E1 i / mA E1E2 ia2 i c1 = - ia2 i / mA

Red2Ox2

Ox1Red1

Ox1Red1

Ox2Red2

DDDDE Red2 Ox1E2 E1 E

Red1Ox2

Red2Ox2

e- E1E2

Ox1Red1

Red2 Ox1E2 E1 E

Red1Ox2

/± £'4Ǿ0 ώ ȃ !ȁ£xxxx ώ DDDD±'ȁ£xxxx i D±' ώ Α Ȭȃ ΐ ȁ & ȁ %ΐȭ ȃ ΐ Ȭȃ Α ȁ & ȁ %Αȭ DDDD±' ώ Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩ ȬΑȭ

Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ £° ???? Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ ΐȁΑȁ&ȁ£xxxx

5!# ϔ %Α ȟ %ΐ

3®¨³ Ȁ

6! ȟ 6# ϔ %Α ȟ %ΐ

VC UAC VA Ox2Re ReOx1 E VC UAC VA Red Ox1 E

Ox"1Re

d VC CUAC VAed2 ed1 E2

E1Ox2Red2Red1Ox1

E VC CUAC

VAd2E2

E1Red2

Ox1 E d"2Red"2 Ox"1

Ǿ ¨" ¸ /89$!4)/.

E2 E1 E2 E1

6! ȃ 6# ώ 5!#

02)3% %. #/-04% $%3

#).%4)15% 0/52 ,Ȍ%,%#42/,93%ȁ Red i

02)3% %. #/-04% $%3 3524%.3)/.3 Ȁ 02)3% %. #/-04% $%

#42/,93%ȁ

Red2 Ox2

Ox1 d1 E2E1 UAC

Ȁ 02)3% %. #/-04% $% ,Ȍ!30%#4

E

Red2Ox2

Ox1 Red1 E2E1 UAC Ei hhhhahhhhc 5 !# ώ Ȩ%Α ȟ %ΐȩ χ Ȩh ȟ h¢ȩ

5!# ώ Ȩ%Α ȟ %ΐȩ χ Ȩh ȟ h¢ȩ χ 2ȁ)

quotesdbs_dbs50.pdfusesText_50