[PDF] [PDF] 254 Compléments (fonctions trigonométriques inverses)

2 5 4 Compléments (fonctions trigonométriques inverses) Les fonctions trigonométriques x sin(x), x cos(x), x tan(x) n'étant pas monotones sur R (la fonction x



Previous PDF Next PDF





[PDF] Fonctions trigonométriques réciproques

Fonctions trigonométriques réciproques 1 Définitions Les fonctions sinus, cosinus définies de r dans l'intervalle [-1 ;1] sont des applications surjectives par  



[PDF] Fonctions trigonométriques réciproques 1 Fonction arcsinus - Base

Par exemple, arcsin (sin π)=0 1 2 Propriétés Les propriétés suivantes se déduisent de celles de la fonction sinus `a l'aide des résultats



[PDF] fonctions trigonométriques réciproques - Université Claude Bernard

Feuille d'exercices 7 Fonctions trigonométriques réciproques Exercice 1 Sur quel ensemble cette fonction est-elle définie et continue ? (Soyez précis sur les



[PDF] Fonctions trigonométriques et hyperboliques réciproques - Meryam

cos + sin ; ∈ Fonctions trigonométriques réciproques 1 Arc cosinus : La fonction : → [−1,1] est surjective mais pas 



[PDF] Cours de Mathématiques L1 Semestre 1

Cours magistral 4 : Réciproques des fonctions trigonométriques Trouvons une fonction réciproque de cos D'abord cos : R → [-1,1] n'est pas une bijection Mais



[PDF] Fonctions réciproques

Théor`eme 1 : Toute fonction f définie sur un intervalle I continue et strictement monotone sur Fonctions réciproques des fonctions trigonométriques



[PDF] 254 Compléments (fonctions trigonométriques inverses)

2 5 4 Compléments (fonctions trigonométriques inverses) Les fonctions trigonométriques x sin(x), x cos(x), x tan(x) n'étant pas monotones sur R (la fonction x



[PDF] Ex_ sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques 1 On considère la fonction f définie par 1 Arctan 1 x f x x 1°) Déterminer l'ensemble 



[PDF] Fonctions usuelles 1 Fonctions trigonométriques réciproques

8 jan 2009 · 1 Fonctions trigonométriques réciproques 1 1 arcsin( ) sin : [−π 2 , π



[PDF] Formulaire de trigonométrie 1 Fonctions trigonométriques

On définit les fonctions cos, sin et tan par les formules Les fonctions trigonométriques satisfont les propriétés suivantes, qui se 3 Fonctions réciproques

[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition

[PDF] comment la terre d'israël fut inventée pdf

[PDF] origine des juifs d'israel

[PDF] appareil circulatoire cours

[PDF] système circulatoire

[PDF] comment la terre d'israël fut inventée

[PDF] appareil circulatoire schéma

[PDF] histoire peuple hebreu

[PDF] mozart wikipedia

[PDF] tp mps poudre blanche

[PDF] exemple programme mblock arduino

[PDF] fonction de production pdf

2.5.4 Compléments (fonctions trigonométriques inverses)Les fonctions trigonométriquesx

?sin(x),x?cos(x),x?tan(x)n"étant pas monotones surR(la fonctionx ?tan(x)n"est même pas définie surRtout entier), pour construire des fonctions inverses (on dit aussi fonctions réciproques) aux fonctions trigonométriques, on est obligé de se restreindre à des intervalles de monotonie de ces fonctions (on prend en général des intervalles de monotonie maximaux).

I.La fonction arcsin:la fonctionx

?sin(x)est monotone (strictement croissante) sur l"intervalle[-π

2,π

2].

On définit alors son inverse, arcsin:[-1,1]

2,π

2],x?arcsin(x).

Il faut retenir que:

1. ledomaine de définitionde la fonction arcsinus est[-1,1]

2.y=arcsin(x)

sin(y)=xet-π 2 ?y?π 2 Les graphes de ces deux fonctions sont symétriques par rapport à la droite d"équationy=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonctionx ?arcsin(x)est dérivable sur]-1,1[et que arcsin(x))?=1

1-x2⎷

II.La fonction arccos:la fonctionx

?cos(x)est monotone (strictement décroissante) sur l"intervalle [0,π]. On définit son inverse, arccos:[-1,1] ?[0,π],x?arccos(x).

Il faut retenir que:

1. ledomaine de définitionde la fonction arccos est[-1,1]

2.y=arccos(x)

?(cos(y)=xet0?y?π)

2.5 Techniques d"intégration29

Les graphes de ces deux fonctions se déduisent l"un de l"autre par symé- trie orthogonale par rapport à la droite d"équationy=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonctionx ?arccos(x)est dérivable sur]-1,1[et que arccos(x))?=-1

1-x2⎷

Remarque:En utilisant les définitions des fonctionsarcsin,arccoset les formules trigonométriques usuelles, on montre: ?x?[-1,1],arcsin(x)+arccos(x)=π 2

En effet, pourx?[-1,1], posonsy=arcsin(x).

Nous avons-π

2 ?y?π

2et sin(y)=x. Or on a sin(y)=cos(π

2-y).

Comme0?π

2 -y?π, on obtient arcsin(x)+arccos(x)=y+arcos(cos(π 2 -y))=π 2.

III.La fonction arctan:la fonction tangente est monotone (strictement croissante) sur l"intervalle]-π

2 2[.

L"image de l"intervalle]-π

2

2[par la fonctionx?tan(x)estRtout

entier. La fonction inverse (ou encore réciproque) déduiteest la fonction arctan:R

2,π

2[. Ce qu"il faut retenir:

1. Ledomaine de définitionde arctan estR

2.y=arctan(x)

tan(y)=xet-π 2 < y <π 2 arctanest dérivable surRet on aarctan(x)?=1 1+x2. IV.Complément à la liste des primitives des fonctions usuelles: λdésignant une constante réelle quelconque, nous avons: 1.? 1

1-x2⎷

dx=arcsin(x)+λ 2.? 1

1+x2dx=arctan(x)+λ

30Intégration: fonction réelle d"une variable réelle.

2.6 Intégrales impropres - Définitions et exemplesUne généralisation de la notion d"intégrale définie.2.6.1 Intégrales (impropres) sur un intervalle non bornéDéfinition 2.30.Soienta?R,f:[a,+∞[

?R. On suppose que pour toutb?a,fest intégrable sur l"intervalle fermé borné [a,b].

On pose alors par définition?

a+∞ f(x)dx=lim b ab f(x)dx. L"expression a+∞ f(x)dxest appelée intégrale impropre defsur? a,+∞? Silim b ab f(x)dxexiste et est un nombre réel, alors l"intégrale impropre a+∞ f(x)dxest dite convergente. Silim b ab f(x)dxn"existe pas ou est infinie, alors? a+∞ f(x)dxest dite divergente Note:Nous n"allons pas aborder ici les théorèmes généraux de convergence des intégrales impropres, mais plutôt considérer des cas simples où on sait calculer? ab f(x)dx. Le passage à la limite lorsquebtend vers+∞(ou lorsqueatend vers - ∞comme ci-dessous) nous permettra de décider de la convergence de l"intégrale impropre considérée.

Exemple 2.31.

1.f:?

1,+∞?

?R,f(x)=1 x 2.

Pourb??

1,+∞?

, on afcontinue sur[1,b]et? 1b f(x)dx=? -1 x 1b =1-1 b

On en déduit lim

b ab f(x)dx=1, donc?

1+∞

f(x)dx=1.

2.f:??

1,+∞?

?R,f(x)=1 x.

On a, pourb?1,?

1b f(x)dx=? ln(x)? 1b =ln(b). Comme lim b ?+∞ln(b)=+∞, on en déduit que l"intégrale impropre

1+∞

f(x)dx diverge.

3. L"intégrale impropre?

0+∞

cos(x)dx diverge.

En effet

0b cos(x)dx=? sin(x)? 0b =sin(b)et lim b ?+∞sin(b)n"existe pas.2.6 Intégrales impropres - Définitions et exemples31quotesdbs_dbs35.pdfusesText_40