[PDF] [PDF] Exercices de Thermodynamique

2) En supposant cette loi valable de z = 0 à « l'infini » calculer la masse Matm Ex-T3 10 Calorimétrie pratique L'application du PDF à la bille, après y avoir



Previous PDF Next PDF





[PDF] Exercices de Thermodynamique

2) En supposant cette loi valable de z = 0 à « l'infini » calculer la masse Matm Ex-T3 10 Calorimétrie pratique L'application du PDF à la bille, après y avoir



[PDF] MECANIQUE DES FLUIDES Cours et exercices corrigés

Ils sont extraits, pour la plupart, des examens et devoirs surveillés que j'ai proposé leur intérêt pratique et pour leur diversité La mécanique des fluides est la science des lois de I'écoulement des fluides Elle On considère un aquarium géant utilisé dans les parcs d'attraction Cours, exercices et problèmes corrigés



[PDF] Mécanique Quantique 2`eme édition - Laboratoire de Physique

direct au rapport de la constante de Planck et de la charge de l'électron (le quantum de flux magnétique φ0 6 3 2 Loi de conservation – Théor`eme de Nœther A : Rotation de 2π du spin d'un neutron 163 Exercices discutons des méthodes d'approximation, mises en pratique pour l' étude des correc-



[PDF] Physique Tout-en-un pour la Licence - Cours, applications et

et exercices corrigés constitue la synthèse parfaite pour préparer les examens mécanique pour les trajectoires et la relation avec l'attraction gravitationnelle un formalisme et un raisonnement mathématiques pour décrire les lois de la En pratique, aucune évolution physique n'est strictement réversible car au cours



[PDF] Exercices corrigés de Physique Terminale S - Physique-Chimie au

sept exercices, ce qui aboutit en Physique à environ 120 exercices sur l' ensemble de l'année Lois de conservation Lors des désintégrations nu- cléaires, il y Chute verticale avec frottement Cas pratique, vous Loi d' attraction universelle



[PDF] CAHIER COURS SIMPLIFIES 100 EXERCICES CORRIGES

des instruments perfectionnés et en s'exerçant à la pratique des mesures En résumé le On calcule le module du vecteur résultant à partir de la loi des cosinus ) مﺎﻤﺘﻟا بوﻴﺠ نوﻨﺎﻗ Interactions mutuelles dans le cas de l'attraction universelle,



[PDF] Structure de la matière Chimie 1 –Cours & Exercices - DSpace

Loi de conservation de la masse (lavoisier), reaction chimique 10 F) L'attraction d'un clou en fer par un aimant les laboratoires avec les techniques de mesure (balance par exemple), il est pratique de fixer un



[PDF] Electrostatique-électrocinétique

exercices d'application dont une partie est tirées des sujets de contrôle attraction entre les deux objets de charges opposées est due à la présence des forces La loi de la force de Coulomb traduisant les propriétés ci-dessus est donnée par l' En pratique, on utilise toujours des différences de potentiel au lieu du 



[PDF] CAPES de sciences physiques : Tome 1 : Physique Cours et exercices

Électrostatique et magnétostatique, rappels de cours et exercices La loi 95-4 du 3 janvier 1994 a confié au C F C (Centre français de l'exploitation du droit de copie, 20, rue des Attraction différentielle On le décrira de manière pratique en coordonnées polaires S, l'examen de la forme géométrique ne suffit pas



[PDF] Cours de Physique Statistique - Laboratoire Interdisciplinaire de

A nouveau, la pratique de la physique statistique ne demande pas l'utilisation Les lois de la thermodynamique ne sont pas indépendantes du reste de la auprès des philosophes) pourrait résoudre l'exercice suivant : pourquoi le calcul de lecture pdf g(Note) le nombre d'étudiant qui ont eu la note Note à l' examen

[PDF] 50 fiches pour comprendre la science politique pdf PDF Cours,Exercices ,Examens

[PDF] 50 mots en français 3ème Français

[PDF] 50 rondes jeux dansés PDF Cours,Exercices ,Examens

[PDF] 51 b) simplification fraction svp urgent 3ème Mathématiques

[PDF] 52 en binaire PDF Cours,Exercices ,Examens

[PDF] 52 méthodes pour enseigner PDF Cours,Exercices ,Examens

[PDF] 52 méthodes pratiques pour enseigner occasion PDF Cours,Exercices ,Examens

[PDF] 52 méthodes pratiques pour enseigner pdf PDF Cours,Exercices ,Examens

[PDF] 53 p 189 Livre sésamath 3eme 3ème Mathématiques

[PDF] 54p235 A rendre lundi 21 septembre 2nde Mathématiques

[PDF] 55 compétences bac pro ga PDF Cours,Exercices ,Examens

[PDF] 58p 88 (livre hyperbole seconde , edition nathan ) DM 2nde Mathématiques

[PDF] 59 p 120 transmath édition 2008 3ème Mathématiques

[PDF] 5e Chimie Interpréter une experience 4ème Autre

[PDF] 5E Chimie: Interpréter une expérience 4ème Chimie

Exercices de Thermodynamique

" Ce fut la grande tâche et la grande gloire de la physique du XIX esiècle d"avoir ainsi considérablement précisé et étendu en tous sens notre connais- sance des phénomènes qui se jouent à notre échelle. Non seulement elle a continué à développer la Mécanique, l"Acoustique, l"Optique, toutes ces grandes disciplines de la science classique, mais elle a aussi créé de toutes pièces des sciences nouvelles aux aspects innombrables : la Thermodynamique et la science de l"Électricité. » LouisDe Broglie(1892-1987) -Matière et Lumière, exposés généraux sur la physique contemporaine, 1(1937) ?Syst`emes thermodynamiques T1? Soit une mole d"un gaz occupant une volumeVmsous la pressionPet `a la temp´eratureT.

1)On suppose que ces grandeurs sont li´ees par l"´equation :?

P+a V2m? (Vm-b) =RT, o`ua,b

etRsont des constantes. Utiliser les propri´et´es d"intensivit´e ou d"extensivit´e des grandeurs pour

´etablir l"´equation correspondante relative `anmoles.

2)Mˆeme question pour l"´equation :P(Vm-b) exp?a

RTVm? =RT. On consid`ere du sable fin dont chaque grain occupe un volumeV0= 0,1mm3. Quel est le volume Voccup´e parN= 6.1023grains? Si on ´etendait uniform´ement ce sable sur la France(d"aire S= 550000km2) quelle serait la hauteur de la couche de sable? ?Consid´erations `a l"´echelle microscopique T1? ???Ex-T1.3Vitesse de lib´eration et vitesse quadratique moyenne

1)Calculer num´eriquement `a la surface de la Terre et de la Lune, pour une temp´erature

T= 300K, la vitesse de lib´erationvlet la vitesse quadratique moyenne pour du dihydrog`ene et du diazote. Commenter. Donn´ees :Constante de gravitationG= 6,67.10-11uSI. Rayon terrestreRT= 6,4.106m; masse de la TerreMT= 6.1024kg. Rayon lunaireRL= 1,8.106m; masse de la LuneML= 7,4.1022kg. Masses molaires :M(H2) = 2g.mol-1etM(N2) = 28g.mol-1.

Constante desGP:R= 8,314J.K-1.mol-1.

2)Quel devrait ˆetre l"ordre de grandeur de la temp´eratureTpour que le diazote, constituant

majoritaire de l"atmosph`ere terrestre, ´echappe quantitativement `a l"attraction terrestre? R´ep : 1)Pour l"expression de la vitesse de lib´erationÜCf Cours de M´ecaniqueetDSn05: v l,T?11,2km.s-1etvl,L?2,3km.s-1. de plus :vq(H2)?1,9km.s-1etvq(N2)?0,5km.s-1.

2)Il faudraitTT≂100000K(!)

1)calculer le nombre de mol´ecules parcm3dans un gaz parfait `a 27◦Csous une pression de

10 -6atmosph`ere.

2)Calculer le volume occup´e par une mole d"un gaz parfait `a latemp´erature de 0◦Csous la

pression atmosph´erique normale. En d´eduire l"ordre de grandeur de la distance moyenne entre mol´ecules.

Exercices de Thermodynamique2008-2009

Solution Ex-T1.1

1)CommeVm=Vn, on a :

P+a V2m? (Vm-b) =RT??

P+n2aV2??

Vn-b? =RT? P+n2a V2? (V-nb) =nRT Rq :on peut ´ecrire l"´equation d"´etat sous la forme? P+A V2? (V-B) =nRTen posantB=nb etA=n2a. Best une grandeur extensive puisqu"elle est additive, sin=n1+n2,B=nb=n1n+n2b= B

1+B2.Aest aussi une grandeur extensive, mais elle n"est pas additive car sin2a?=n21a+n22a.

2)P(V-nb)exp?na

RTV? =nRT.

Solution Ex-T1.2

Le volume occup´e estV=N.v= 6.1013m3= 6.1016L(60 millions de milliards de litres!) . Ce sable ´etal´e surS= 5,5.105km2= 5,5.1011m2formerait une couche de hauteurh=V

S?110m

Solution Ex-T1.3

1)D"apr`es l"´equation d"´etat du gaz parfait, le nombre de mol´ecules par unit´e de volume est

n ?=N V=PkBT?10-6.1,01325.1051,38.10-23×300?2,5.1019mol´ecules par m`etre cube soitn??2,5.1013 mol´ecules parcm3ou encoren??4.10-11mol.cm-3.

2)Le volume molaire cherch´e est :Vm=RT

V=8,314×273,151,013.105= 22,4.10-3m3= 22,4L.

?Mod´elisations de gaz r´eelsT1? ???Ex-T1.4Dioxyde de carbone

Pour le dioxyde de carbone (" gaz carbonique »), les coefficientsaetbde l"équation d"état deVan

der Waalsont pour valeurs respectives0,366kg.m5.s-2.mol-2et4,29.10-5m3.mol-1. On place deux moles de ce gaz dans une enceinte de volumeV= 1Là la température deT= 300K.

Q :Comparer les pressions données par les équations d"état du gaz parfait et du gaz deVan der

Waals, la valeur exacte étantP= 38,5bars.

Rép :PGP=nRT

V?4,99.106Pa, soit une erreur relative de?

?P-PGP P? ?≈30%;PVdW= nRTV-nb-n2aV2?3,99.106Pa, soit une erreur relative de? ?P-PVdW P? ?≈4%. Le modèle du gaz parfait est donc inacceptable, tandis que le modèle du gaz deVan der Waalsmontre une bien meilleure précision. ???Ex-T1.5Deux r´ecipients Un récipient(A)de volumeVA= 1L, contient de l"air àtA= 15◦Csous une pressionPA=

72cmHg.

Un autre récipient(B)de volumeVB= 1L, contient également de l"air àtB= 20◦Csous une pressionPB= 45atm.

On réunit(A)et(B)par un tuyau de volume négligeable et on laisse l"équilibre se réaliser à

t= 15◦C. On modélise l"air par un gaz parfait de masse molaireM= 29g.mol-1.Données :le "centimètre de mercure» est défini par la relation1atm= 76cmHg= 1,013.105Pa.

Q :Quelle est la pression finale de l"air dans les récipients? Quelle est la masse d"air qui a été

transférée d"un récipient dans l"autre? Indications :Exprimer, initialement, les quantités de matièrenAetnBdans les récipients. En

déduire la quantité de matière totale. L"état final étant un état d"équilibre thermodynamique,

2http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices de Thermodynamique

les variables intensives sont uniformes, dont la densité moléculaire etla pression. En déduire les

quantités de matière finalesnAFetnBF.

Rép :mB→A= 26,1getP?22,5bars?22,2atm.

???Ex-T1.6Point critique et ´equation r´eduite d"un gaz de Van der Waals (*)

1)Une mole de gaz deVan der Waalsa pour équation d"état :?

P+a V2? (V-b) =RT ExprimerPen fonction deTetVet calculer les dérivées partielles :?∂P ∂V? T et?∂2P∂V2? T

2)Montrer qu"il existe un unique état C tel que :?∂P

∂V? T = 0et?∂2P∂V2? T = 0. Déterminer son volume molaireVC, sa températureTCet sa pressionPC.

3)On poseθ=T

TC,ν=VVCet?=PPC.

Montrer que l"équation d"état liantθ,νet?est universelle, c"est à dire qu"elle ne fait plus

intervenir aucune constante dépendant du gaz.

Rép : 1)?∂P

∂V? T =-RT(V-b)2+2aV3et?∂2P∂V2? T =2RT(V-b)3-6aV4 2)C? V

C= 3b;TC=8a

27Rb;PC=a27b2?

-3)? ?+3ν2? (ν-1) = 8θ ???Ex-T1.7Mod´elisations d"un gaz r´eel (*)

1)Le tableau ci-dessous donne avec trois chiffres significatifs exacts le volume molaireV(en

m

3.mol-1) et l"énergie interne molaireU(enkJ.mol-1) de la vapeur d"eau à la température

t= 500◦Cpour différentes valeurs de la pressionP(enbars). On donne en outre la constante des GP :R= 8,314J.K-1.mol-1.

P110204070100

U56,3356,2356,0855,7755,4754,78

Justifier sans calcul que la vapeur d"eau ne se comporte pas comme unGP. On se propose d"adopter le modèle deVan der Waalspour lequel on a, pour une mole de gaz : P+a V2? (V-b) =RTetU=UGP(T)-aV.

Calculer le coefficientaen utilisant les énergies internes des états àP= 1baret àP= 100bars.

Calculerben utilisant l"équation d"état de l"état àP= 100bars. Quelle valeur obtient-on alors pourUàP= 40bars? Quelle température obtient-on alors en utilisant l"équation d"état avecP= 40barset

V= 1,56.10-3m3.mol-1?

Conclure sur la validité de ce modèle.

2)On réalise une détente isochore (ie à volume constant) d"une mole de vapeur d"eau de l"état

initialI{tI= 500◦C;PI= 100bars}jusqu"à l"état finalF{TF=?;PF= 70bars}. Le tableau ci-dessous donne le volume molaireV(enm3.mol-1) et l"énergie interne molaireU (enkJ.mol-1) de la vapeur d"eau sousP= 70barspour différentes valeurs de la températuret (en ◦C). t300320340360380400

U47,3048,3849,3250,1750,9651,73

Déterminer la température finaleTFet la variation d"énergie interneΔU=UF-UI. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/3

Exercices de Thermodynamique2008-2009

Rép : 1)UH2O(g)ne vérifie pas la première loi deJoule:H2O(g)ne se comporte pas comme un gaz parfait. Modélisation deVdW:a= 9,23.10-1J.m-3.mol-1etb= 8,2.10-5m3.mol-1.

2)TF= 599KetΔU=UF-UI=-6,1kJ.mol-1.

?Coefficients thermo´elastiques et phases condens´ees T1? ???Ex-T1.8Gaz de Van der Waals Une mole de dioxyde de carboneCO2obéit à l"équation deVan der Waals:? P+a V2? (V-b) =

RT, oùVest le volume molaire du gaz.

Déterminer le coefficient de dilatation à pression constanteαen fonction des variables indépen-

dantesTetV, des constantesa,bet deR. Retrouver son expressionαGPdans le cas d"un gaz parfait.

Rép :a=R

-2aV2(V-b) +RTVV-bet on vérifie quelim a→0 b→0α=1

T=αGP.

???Ex-T1.9Gaz de Joule

Une mole de gaz deJouleobéit à l"équation d"état :P(V-b) =RT, oùVest le volume molaire

du gaz.

Déterminer le coefficient de compressibilité isothermeχTen focntion des variables indépendantes

V,P, etb.

Retrouver son expressionχT,GPdans le cas d"un gaz parfait. Exprimer l"écart relatif :χT-χT,GP

χT,GP.

Comparer les compressibilité d"un gaz deJouleet d"un gaz parfait.

Rép :χT=?

1-b V?

1Pet on vérifie quelim

b→0χT=1P=αGP.

T-χT,GP

χT,GP=-bV<0→; donc le gaz de Joule est moins compressible que le gaz parfait. ???Ex-T1.10Eau liquide

Une mole d"eau liquide est caractérisée dans un certain domaine de températures et de pressions

autour de l"état 0 où{P0= 1bar;T0= 293K;V0= 10-3m3}, par un coefficient de dilatation isobareα= 3.10-4K-1et par un coefficient de compressibilité isothermeχT= 5.10-10Pa-1 constants.

1)Établir que l"équation d"état liantV,PetTde ce liquide est :

ln V

V0=α(T-T0)-χT(P-P0)

2)Calculer son volume molaire sousP= 1000barset àT= 293K. Commenter.

3)Une mole d"eau liquide est enfermée dans une bouteille métallique de volumeV0constant.

Par suite d"un incendie, la température passe deT0= 293KàT= 586K. Calculer la pressionPdans le récipient et commenter. Reprendre le calcul pour un gaz parfaitquotesdbs_dbs42.pdfusesText_42