[PDF] [PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

On la note lna La fonction logarithme népérien, notée ln, est la fonction : ] [ ln: 0; +∞ 



Previous PDF Next PDF





[PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

On la note lna La fonction logarithme népérien, notée ln, est la fonction : ] [ ln: 0; +∞ 



[PDF] LOGARITHME NEPERIEN - Pierre Lux

Ainsi à tout réel x strictement positif, on peut associer un unique réel noté ln ( x ) Définition On appelle fonction logarithme népérien la fonction qui à un réel x 



[PDF] Chapitre 10 La fonction logarithme népérien - Maths-francefr

Le principe est le même avec la fonction exponentielle A ce niveau du cours, on sait résoudre l'équation ex = 1 (cette équation admet une solution et une seule à  



[PDF] La fonction logarithme népérien - Lycée dAdultes

3 déc 2014 · comme la fonction exponentielle est strictement croissante, on a : ln a < ln b La fonction logarithme est donc strictement croissante Propriété 1 : 



[PDF] Fonction logarithme népérien

D 2 Page 3 Cours de mathématiques ECT1 Exemple : Soient x et y > 0 Simplifier le plus possible les expressions suivantes 1 ln(2x)−ln(x) = ln(2)+ 



[PDF] Synthèse de cours (Terminale S) → La fonction logarithme népérien

(voir la figure ci-dessous) Ce réel est appelé logarithme népérien de x et on le note : ln x ou ( ) ln x On a donc, pour tout réel x strictement positif : ln x e x =



[PDF] Synthèse de cours (Terminale ES) → La fonction logarithme népérien

logarithme népérien où la tangente passe par l'origine (son équation est x y e = ) Equation ln x = m Pour tout réel m, on note « m e » (que l' 



[PDF] Cours Terminale L La fonction logarithme népérien - Dominique Frin

Cette fonction est appelée fonction logarithme népérien, notée ln Ainsi, exp(x) = y équivaut à ln(y) = x Pour tout réel x, ex = y équivaut à pour 



[PDF] Fonction logarithme népérien, cours de Terminale S - Mathsfg - Free

12 fév 2018 · On appelle fonction logarithme népérien et on note ln la fonction qui à tout réel x strictement positif associe l'unique réel y tel que ey = x



[PDF] Résumé de cours : Logarithme néperien

20 déc 2005 · Le logarithme néperien, est la fonction notée ln définie sur ]0, +∞[, comme étant l' unique primitive de 1 x qui s'annule en 1, autrement dit :

[PDF] cours logigramme pdf

[PDF] cours logistique internationale gratuit

[PDF] cours lsf pdf

[PDF] cours macroéconomie l1 eco gestion

[PDF] cours macroéconomie tunisie

[PDF] cours maintenance biomedicale pdf

[PDF] cours maintenance informatique pdf

[PDF] cours maintenance pc portable pdf

[PDF] cours maintenance photocopieur pdf

[PDF] cours mairie de paris 2017/18

[PDF] cours make up pdf

[PDF] cours management de projet ppt

[PDF] cours management des entreprises bts

[PDF] cours management des entreprises pdf

[PDF] cours management des organisations pdf

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un trava il de 20 ans , Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addi tion (paragra phe II). Ceci peut paraît re dérisoire aujourd'hui, ma is il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur ℝ, à valeurs dans

0;+∞

. D'après le théorème des valeurs intermédiaires, pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans ℝ.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ][ ln:0;+∞→ x!lnx

Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre. - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation

y=x

. - Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log est définie par :

log(x)= lnx ln10

Conséquences : a)

y=lnxavecx>0⇔x=e y b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

II. Propriété de la fonction logarithme népérien 1) Relation fonctionnelle Théorème : Pour tous réels x et y strictement positifs, on a : ()lnlnln xyxy ×=+

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

e ln(x×y) =x×y=e lnx ×e lny =e lnx+lny

Donc ()lnlnln xyxy ×=+

Remarque : Cette formule permet de transformer un produit en somme. Ainsi, celui qui aurait à effectuer 36 x 62, appliquerait cette formule, soit : log(36 x 62) = log(36) + log(62) ≈ 1,5563 + 1,7924 (voir table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : log(36 x 62) ≈ 3,3487 En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : 36 x 62 = 2232. 2) Conséquences Corollaires : Pour tous réels x et y strictement positifs, on a : a)

ln 1 x =-lnx b) ln x y =lnx-lny c) lnx= 1 2 lnx d) lnx n =nlnx avec n entier relatif Démonstrations : a) 11 lnlnln ln1 0xx xx b) 11 lnlnln lnlnln x xxxy yyy c) ()

2lnlnl nlnlnxxxxxx=+=×=

d) On démontre ce résultat par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ()

1 lnlnln lnln ln(1 )ln nnn xxxxxnxxnx

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Simplifier une expression Vidéo https://youtu.be/HGrK77-SCl4 ()()

ln35 ln3 5A=-++

B=3ln2+ln5-2ln3

C=lne 2 -ln 2 e ln35 ln3 5 ln35 35 ln95 ln4 A=-++

B=3ln2+ln5-2ln3

=ln2 3 +ln5-ln3 2 =ln 2 3 ×5 3 2 =ln 40
9 C=lne 2 -ln 2 e =2lne-ln2+lne =2-ln2+1 =3-ln2

III. Etude de la fonction logarithme népérien 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : La fonction ln est continue sur

0;+∞

, donc pour tout réel a > 0, on a : lim x→a lnx=lna . Donc par composée de limites, en posant X=lnx lim x→a lnx-lna x-a =lim

X→lna

X-lna e X -e lna =lim

X→lna

1 e X -e lna X-lna Comme la fonction exponentielle est dérivable sur ℝ, on a : lim

X→lna

1 e X -e lna X-lna 1 e lna 1 a et donc lim x→a lnx-lna x-a 1 a

. Exemple : Vidéo https://youtu.be/yiQ4Z5FdFQ8 Dériver la fonction suivante sur l'intervalle

0;+∞

2 ln x fx x 2 2 2 22
1

2lnln1

2lnln 2ln ln xxx x fx x xx x x xx

2) Variations Propriété : La fonction logarithme népérien est strictement croissante sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x >0 . Corollaires : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxMéthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/GDt785E8TPE Vidéo https://youtu.be/_fpPphstjYw a) Résoudre dans ℝ l'équation suivante : ()()ln3ln 90 xx-+-=

b) Résoudre dans ℝ l'inéquation suivante : ln3-x -lnx+1 a) Ensemble de définition : x-3>0 x>3 et 9-x>0 x<9

L'équation est définie sur ]3 ; 9[. On restreint donc la recherche des solutions à cet intervalle. ()()ln3ln 90 xx-+-=

2 2 ln39 0 ln39 ln1 391
12271
12280

123212 32

622622

22
xx xx xx xx xx xetx

6YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLes solutions sont donc

6-22 et 6+22 car elles appartiennent bien à l'ensemble de définition. b) Ensemble de définition : 3-x>0 x<3 et x+1>0 x>-1

L'inéquation est définie sur ]-1 ; 3[. On restreint donc la recherche des solutions à cet intervalle.

ln3-x -lnx+1 ⇔ln3-x

L'ensemble solution est donc

1;3 . 3) Limites aux bornes Propriété : lim x→+∞ lnx=+∞ et lim x→0 x>0 lnx=-∞

Démonstration : - Soit un intervalle

a;+∞

quelconque. Démontrons que cet intervalle contient toutes les valeurs de ln dès que x est suffisamment grand.

lnx>a

à condition que

x>e a 0 0 1 limlnlimlnlim ln xXX x xX X

. 4) Courbe représentative On dresse le tableau de variations de la fonction logarithme népérien : x 0 +∞

ln'(x) lnx

7YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frIV. Limites et croissances comparées Propriétés (croissances comparées) : a)

lim x→+∞ lnx x =0 et pour tout entier non nul n, lim x→+∞ lnx x n =0 b) lim x→0 x>0 xlnx=0 et pour tout entier n, lim x→0 x>0 x n lnx=0 Démonstrations dans les cas où n = 1 : En posant X=lnx : a) lim x→+∞ lnx x =lim

X→+∞

X e X =0 par croissance comparée dequotesdbs_dbs50.pdfusesText_50