[PDF] [PDF] Terminale S - Loi uniforme Loi exponentielle - Parfenoff

Loi uniforme Loi exponentielle I) Loi uniforme de probabilité sur [a : b] La loi de probabilité qui admet pour densité la fonction constante égale à



Previous PDF Next PDF





[PDF] Terminale S - Loi uniforme Loi exponentielle - Parfenoff

Loi uniforme Loi exponentielle I) Loi uniforme de probabilité sur [a : b] La loi de probabilité qui admet pour densité la fonction constante égale à



[PDF] 1 Rappels sur la loi exponentielle

strictement positif, alors X/λ suit la loi exponentielle de paramètre λ 2 Lois exponentielles et indépendance Un premier résultat concernant n v a r i i d de loi 



[PDF] 1 Loi exponentielle et temps de panne

En outre, on a la formule ¯ F(t) = exp(−∫ t 0 λ(s)ds) Le taux de panne d'une loi exponentielle de param`etre λ est la constante λ Quel que soit l'âge de 



[PDF] Loi exponentielle - Jaicompris

Une variable aléatoire X suit une loi exponentielle de param`etre λ On sait que Savoir démontrer la formule de l'espérance d'une loi exponentielle Soit X une 



[PDF] Probabilités et variables aléatoires - Institut de Mathématiques de

miales, géométrique, de Poisson ; continues uniforme, exponentielle, Gamma, normale, du les deux théorèmes importants : loi des grands nombre et théorème de central limite (formule des probabilités totales) Soit (Ai)i∈I une fa -



[PDF] Cours 2: Variables aléatoires continues, loi normale - Institut de

Loi exponentielle 3 On calcule espérance et variance à l'aide des formules suivantes : E(X) = Les lois exponentielles sont souvent utilisées pour modéliser



[PDF] variables continues usuelles

1 1 Théorème Soit une variable aléatoire qui suit une loi exponentielle de paramètre λ Alors admet une espérance et une variance données par les formules :



[PDF] Principales distributions de probabilités

Remarque 3 La formule donnant l'espérance semble assez naturelle En effet, le nombre qui est distribué suivant une loi exponentielle (voir section suivante)



[PDF] MODÈLES DE DURÉE Processus poissoniens et files dattente

3 août 2020 · L'apparition de la loi exponentielle Lorsque l'on observe un processus de Poisson, il est naturel de s'intéresser au temps d'attente entre les 

[PDF] loi exponentielle paramètre lambda

[PDF] loi exponentielle probabilité conditionnelle

[PDF] loi exponentielle sans mémoire

[PDF] loi exponentielle sans mémoire démonstration

[PDF] loi exponentielle sans vieillissement

[PDF] loi exponentielle terminale s

[PDF] loi exponentielle trouver lambda

[PDF] loi falloux

[PDF] loi ferry 1882

[PDF] loi ferry 1886

[PDF] loi fondamentale de la dynamique

[PDF] loi géométrique

[PDF] loi géométrique exercices corrigés

[PDF] loi géométrique tronquée

[PDF] loi géométrique tronquée définition

Loi uniforme. Loi exponentielle

I) Loi uniforme de probabilité sur [a : b]

La loi de probabilité qui admet

pour densité la fonction ࢌ constante

égale à

sur [ࢇ ; ࢈], est appelée loi uniforme sur [ࢇ ; ࢈]

Soit [ࢉ ; ࢊ] un intervalle inclus dans [ࢇ ; ࢈] et ࢄ une variable aléatoire

suivant la loi uniforme sur [ࢇ ; ࢈], alors : ࡼ ( ࢉ ൑ࢄ ൑ࢊ )= ׬

Propriétés :

Si ܺ est une loi de probabilité suivant une loi uniforme sur l'intervalle [ܾ ;ܽ signifie que ܺ sur [ܾ ; ܽ L'espérance mathématique d'une variable aléatoire

ܾ ; ܽ] est ܧ(ܺ

Exemples :

1) Dans une ville (idéale) les autobus passent à chaque arrêt exactement toutes les

20 minutes. On appelle ܺ

ܺsur l'intervalle [0 ; 20], on a

donc : ( 5 ൑ܺ et ܲ( ܺ ൒12 )= ܲ ( 12 ൑ܺ enfin le temps d'attente moyen qui est égal à ܧܺ soit 10 minutes. 2) La fonction " alea » d'une calculatrice affiche au hasard un nombre réel appartenant à ]0 ; 1[. Soit ܺ le nombre affiché, ܺ une loi uniforme sur ]0 ; 1[. On a donc : ( 0,15 ൑ܺ = 0,25 et ܲ( ܺ ൒0,8 ) = ܲ ( 0,8 ൑ܺ =0,2

Remarque :

Si

ܺ suit une loi uniforme sur [ܾ ;ܽ

répartition de ܺ

Pour tout ݔג

ܨ (ݔ)=ܲ( ܺ ൑ݔ )= 0 si ݔ ൑ܽ si ܽ൑ݔ൑ܾ

1 si ݔ ൒ܾ

II) Loi exponentielle

1) Définition

Soit un réel strictement positif. Une variable aléatoire ࢄ suit une loi exponentielle de paramètre lorsque sa densité de probabilité est la fonction ࢌ la fonction définie sur [ 0 ; + [ par :

Remarque :

On peut vérifier que ݂ est bien une densité de probabilité sur [0 ; + [ en effet :

ł݂ est continue et positive sur [0 ; + [

= 1 - ݁ donc lim

݂(ݔ)݀ݔ=1

Ce qui signifie que l'aire sous la courbe de

݂ sur [0 ; + [ est égale à 1

Résultats :

Soit ܺ une variable aléatoire suivant la loi exponentielle de paramètre , et ܽ et ܾ deux réels positifs ou nuls ,alors on a: = 1 - ݁

ܽ ) = 1 - ܲ ( ܽ ܺ

Exemples :

Exemple 1 : La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans est ( ܺ ൒5)=1െ ׬ ൎ0,535 La probabilité que la durée de vie de cet ordinateur portable soit inférieure à 3 ans est ܲ( ܺ ൑3)= ׬ =1െ݁ ൎ0,313 Exemple 2 : Le temps d'attente exprimé en minutes au guichet d'une banque est une variable aléatoire T suivant la loi exponentielle de paramètre ߣ probabilité qu'un client attende moins de 8 minutes est égale à 0,7. a) Calculer une valeur approchée à 0,0001 de ߣ = 0,7

De là ݁

ൎ0,1505 b) Calculer la probabilité qu'un client attende entre 15 et 20 minutes ൎ0,055

2) Propriétés

a) Espérance mathématique d'une loi exponentielle

Soit ܺ

> 0 ),alors :

Démonstration :

La fonction ܩ

a pour dérivée ܩ (ݐ)= t݁ d'où = lim

0= lim

Comme on sait que lim

=0 et que lim =0 on a ܧ(ܺ Remarque : E(ܺ) représente la valeur moyenne de la variable aléatoire de ܺ

Exemple :

Si ܺ est une variable aléatoire suivant une loi exponentielle de paramètre ߣ sa valeur moyenne soit égale à 20, alors on peut écrire que =20 d'où ߣ b) Probabilité conditionnelle

Démonstration :

Soit ܺ une variable aléatoire suivant une loi exponentielle de paramètre ߣ et ܽ deux réels strictement positifs. On cherche la probabilité que ܺ supérieure ou égale à ܽ + ݐ sachant que ܺ est supérieure à ܽ

D'où

D'où le nom de " loi de durée de vie sans vieillissement » donné quelquefois à la loi exponentielle.

Exemple :

La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans sachant qu'il fonctionne depuis déjà 2 ans est égale à ( ܺ ൒5 )= ܲ( ܺ ൎ0,687 c) Fonction de répartition Si ࢄ est une variable aléatoire suivant une loi exponentielle de paramètre

ࣅ, on définit la fonction ࡲ appelée fonction de répartition de ࢄ de la façon

suivante :

Pour tout

0 si ࢞൑૙

si ࢞൒ 0quotesdbs_dbs47.pdfusesText_47