[PDF] [PDF] Calcul Algébrique

Maths en Ligne carrée de nombres négatifs, pour résoudre les équations algébriques Dans l' 3 si b2 − 4ac < 0 l'équation admet deux racines complexes,



Previous PDF Next PDF





[PDF] Calcul Algébrique

Maths en Ligne carrée de nombres négatifs, pour résoudre les équations algébriques Dans l' 3 si b2 − 4ac < 0 l'équation admet deux racines complexes,



[PDF] Histoire des equations alg ebriques

tific) est un bon mélange d'histoire et de mathématiques – celles-ci `a un les équations algébriques; al-jabr permet de passer par exemple de x2 = 40x − 4x2



[PDF] (Petite) histoire des équations algébriques - Université Côte dAzur

doute en partie que les mathématiques grecques soient centrées sur la géométrie Arnaud Beauville (Petite) histoire des équations algébriques 



[PDF] A Équations algébriques réciproques - Maths-francefr

SESSION 2012 Concours commun Mines-Ponts PREMIÈRE EPREUVE FILIÈRE MP A Équations algébriques réciproques 1) • Soit P ∈ Rn[X] Posons P = n



[PDF] ALGÈBRE APPLIQUÉE

Conséquences d'un système d'équations algébriques et radical d'un idéal de Fabio Acerbi du site Image des mathématiques1 présente ce que nous savons 



[PDF] Sur quelques propriétés des équations algébriques qui - Numdam

Sur quelques propriétés des équations algébriques qui ont toutes leurs racines réelles Nouvelles annales de mathématiques 2e série, tome 19 (1880), p 224-  



[PDF] Théorème général sur les équations algébriques - Numdam

MICHEL PETROVITCH Théorème général sur les équations algébriques Nouvelles annales de mathématiques 4e série, tome 19 (1919), p 281-284



[PDF] INVITATION AUX ÉQUATIONS DIFFÉRENTIELLES ALGÉBRIQUES

1 D'o`u viennent les DAE? 1 1 Une approche mathématiques Dans certains livres ou polycopié de mathématiques traitant d'équations 



[PDF] Calcul et géométrie : résoudre des équations algébriques 1 Le

Cela partait bien entendu d'un bon sentiment, mais l'introduction des arcs de cercle simsoniens est plus que maladroite Si les mathématiques sont correctes, il s' 



[PDF] Calculs algébriques - Lycée dAdultes

27 fév 2017 · EXERCICES EXERCICE 4 1) Résoudre, dans R, les équations suivantes : a) 9( x - 3) 2 = x 2 - 4x + 4 b) (3x + 1) 2 = 2(9x 2 - 1) c) x - 1 x + 1

[PDF] Maths équations du second degré

[PDF] Maths equations et aires

[PDF] Maths Équations Pour demain

[PDF] maths équations produits

[PDF] Maths et arts

[PDF] maths et arts au collège

[PDF] maths et arts plastiques

[PDF] maths et arts plastiques géométrie de la création

[PDF] Maths et astronomie

[PDF] Maths et chimie

[PDF] maths et chimie temperatures et liquefaction

[PDF] maths et climatologie

[PDF] maths et geographie

[PDF] maths et mathique

[PDF] maths et mathiques

Université Joseph Fourier, Grenoble Maths en Ligne

Calcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 1

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 11

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Entraînement 16

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Qu"on m"aille quérir M. Viète . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 L"homme qui savait tout... ou pas . . . . . . . . . . . . . . . . . . . . 38

3.3 Triangle de Pascal, binôme de Newton et poésie védique . . . . . . . . 39

3.4 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 45

27 septembre 2014

Maths en LigneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 1

Maths en LigneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 2

Maths en LigneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!, ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 3

Maths en LigneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des indiens, des chinois et des arabes bien avant Pascal) est beaucoup plus rapide. ?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1)quotesdbs_dbs10.pdfusesText_16