[PDF] [PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

http://math unice fr/∼rubentha/cours html PRÉREQUIS : Pour pouvoir Tous les exercices de ce chapitre n'ont pas un lien direct avec le cours Par contre, ils



Previous PDF Next PDF





[PDF] Probabilités Exercices corrigés

Probabilités exercices corrigés Terminale S Probabilités Exercices corrigés 1 Combinatoire avec démonstration 2 Rangements 3 Calcul d'événements 1 4



[PDF] PROBABILITES – EXERCICES CORRIGES - Math2Cool

Calculer le probabilité qu'elle provienne de l'urne 1 u Page 3 Cours et exercices de mathématiques M CUAZ, http://mathscyr free



[PDF] EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES Calculer la probabilité d'un événement Exercice n°1: Un sachet contient 2 bonbons à la menthe, 3 à l'orange et 5 au 



[PDF] Probabilités conditionnelles

TD Probabilités feuille n◦ 4 Probabilités conditionnelles Exercice 1 Dans une usine, on utilise conjointement deux machines M1 et M2 pour fabriquer des pi` 



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

http://math unice fr/∼rubentha/cours html PRÉREQUIS : Pour pouvoir Tous les exercices de ce chapitre n'ont pas un lien direct avec le cours Par contre, ils



[PDF] Exercices et problèmes de statistique et probabilités - Dunod

1 1 Rappels de Mathématiques 1 2 Axiomes du calcul des probabilités donc évité de proposer des exercices de probabilités calculatoires classiques 



[PDF] Exercices probabilités

EXERCICE 1: Une urne contient 4 boules noires numérotées de 1 à 4 et 3 boules blanches numérotés 1,2 et 3 1) Quelle est la probabilité de tirer une boule noire  



[PDF] Exercices : Probabilités

Déterminer la loi de probabilité de Exercice 7 Une urne contient 5 boules rouges et − 5 boules noires ( ≥5) A/ Tirage avec remise : 



[PDF] Probabilité et dénombrement - Exo7 - Exercices de mathématiques

Quelles sont les probabilités des événements suivants : il est tout en noir ; une seule pièce est noire sur les trois Correction Τ [005984] Exercice 3 Si 30 



[PDF] Analyse combinatoire et probabilités - mathématiques et physique

Combien de "nombres" secrets y a-t-il ? Solution 2 1 2 Exercice M-D'un jeu de 52 cartes, on tire D' 

[PDF] maths sur puissances

[PDF] Maths sur Thalès pour demain

[PDF] maths svp

[PDF] maths table carrée , nappe ronde

[PDF] Maths Tableau

[PDF] maths tableur troisième

[PDF] Maths tarif

[PDF] maths taux de variation

[PDF] maths terminale es exercices corrigés

[PDF] maths terminale es fonction exponentielle

[PDF] Maths Terminale S

[PDF] maths terminale s exercices corrigés livre

[PDF] maths terminale s exercices corrigés livre pdf

[PDF] maths terminale st2s statistiques

[PDF] maths terminale sti2d exercices

Integration et probabilites

(cours + exercices corriges)

L3 MASS, Universite Nice Sophia Antipolis

version 2021Sylvain Rubenthaler

Table des matieres

Introduction iii

1 Denombrement (rappels) 1

1.1 Ensembles denombrables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theorie de la mesure 5

2.1 Tribus et mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Integrales des fonctions etagees mesurables positives. . . . . . . . . . . . . . . 9

2.4 Fonctions mesurables et integrales . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Integrales des fonctions mesurables positives . . . . . . . . . . . . . . . 10

2.4.2 Integrales des fonctions mesurables de signe quelconque. . . . . . . . . 11

2.5 Fonction de repartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Ensembles negligeables 17

4 Theoremes limites 21

4.1 Stabilite de la mesurabilite par passage a la limite. . . . . . . . . . . . . . . . 21

4.2 Theoremes de convergence pour les integrales. . . . . . . . . . . . . . . . . . . 22

4.3 Integrales dependant d'un parametre . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Mesure produit et theoremes de Fubini 33

5.1 Theoremes de Fubini et Fubini-Tonelli . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Changement de variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Fondements de la theorie des probabilites 41

6.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Esperance d'une v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Inegalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Lois classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Lois discretes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.2 Lois continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Fonctions caracteristiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Fonctions generatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i

6.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Variables independantes 59

7.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1Evenements et variables independantes . . . . . . . . . . . . . . . . . 59

7.1.2 Densites de variables independantes . . . . . . . . . . . . . . . . . . . 60

7.2 Lemme de Borel-Cantelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Somme de deux variables independantes . . . . . . . . . . . . . . . . . . . . . 62

7.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Convergence de variables aleatoires 71

8.1 Les dierentes notions de convergence . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Theoreme central-limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Conditionnement 83

9.1 Conditionnement discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Variables gaussiennes 89

10.1 Denitions et proprietes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 Gaussiennes et esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . 90

A Table de la loi normale 93

Introduction

Le but de ce cours est d'introduire les notions de theorie de la mesure qui seront utiles en calcul des probabilites et en analyse. Il est destine aux etudiants qui veulent poursuivre leurs etudes dans un master a composante mathematique. Pour un cours plus complet, se reporter a la bibliographie. Informations utiles (partiels, bar^emes, annales, corriges, ...) : PREREQUIS : Pour pouvoir suivre ce cours, l'etudiant doit conna^tre, entre autres, les developpements limites, les equivalents, les etudes de fonction, le denombrement, les nombre complexes, la theorie des ensembles., les integrales et primitives usuelles, la trigonometrie, etc. Nouveautes 2019 : corrections apportees par Laure Helme-Guizon (Teaching Fellow, UNSW, Sydney, Australia) et Antoine Mal. Un grand merci a eux. iii

Chapitre 1

Denombrement (rappels)

1.1 Ensembles denombrables

Denition 1.1.1.Injection.

SoitE;Fdes ensembles,f:E!Fest une injection si8x;y2E,f(x) =f(y))x=y.

Denition 1.1.2.Surjection.

SoitE;Fdes ensembles,f:E!Fest une surjection si8z2F,9x2Etel quef(x) =z.

Denition 1.1.3.Bijection.

SoitE;Fdes ensembles,f:E!Fest une bijection sifest une injection et une surjection. Proposition 1.1.4.SoientE;F;Gdes ensembles. Soientf:E!F,g:F!G. Alors [f etginjectives])[gfinjective]. Demonstration.Soientx;ytels quegf(x) =gf(y). L'applicationgest injective donc

f(x) =f(y). L'applicationfest injective doncx=y.Denition 1.1.5.On dit qu'un ensembleEest denombrable s'il existe une injection deE

dansN. Dans le cas ouFest inni, on peut alors demontrer qu'il existe alors une bijection deEdansN. (Cela revient a dire que l'on peut compter un a un les elements deE.)

Exemple 1.1.6.Tout ensemble ni est denombrable.

Exemple 1.1.7.Zest denombrable car l'application

f:Z!N n7!(

2nsin>0

2n1sin <0

est bijective (donc injective).01 23-1-2-30 2 4

13Figure1.1 {Enumeration des elements deZ.

1

2CHAPITRE 1. DENOMBREMENT (RAPPELS)

Exemple 1.1.8.NNest denombrable car l'application

f:NN!N (p;q)7!(p+q)(p+q+ 1)2 +q est bijective (donc injective).0 129 58
74

3 6Figure1.2 {Enumeration des elements deNN.

Exemple 1.1.9.L'ensembleQest denombrable. L'ensembleRn'est pas denombrable. Proposition 1.1.10.Si on aE0,E1, ...,En, ...des ensembles denombrables alorsE= E

0[E1[E2[ =[n>0Enest un ensemble denombrable.

(En d'autres termes, une reunion denombrable d'ensembles denombrables est denombrable.) Demonstration.S Pour touti>0,Eiest denombrable donc9fi:Ei!Ninjective. Soit

F:[n>0En!NN

x7!(i;fi(x)) six2Ei Cette applicationFest injective. L'ensembleNNest denombrable donc il existeg:NN! Ninjective. Par la proposition 1.1.4,gFest injective. Donc[n>0Enest denombrable.1.2 Exercices Tous les exercices de ce chapitre n'ont pas un lien direct avec le cours. Par contre, ils constituent des revisions necessaires a la suite du cours. 1.2.1

Enonces

1) Rappel :Sif:E!FetAF,f1(A) =fx2E:f(x)2Ag. SiCE,f(C) =

ff(x);x2Cg.

On considere l'applicationf:R!R,x7!x2.

(a) Determinerf([3;1]),f([3;1]),f(]3;1]). (b) Determinerf1(] 1;2]),f1(]1;+1[),f1(]1;0][[1;2[).

2) Calculer les limites suivantes :

(a) lim x!0sin(x)log(1+x) (b) lim x!+11 +2x x (c) lim x!01cos(x)xsin(x)

1.2. EXERCICES3

(d) lim x!01(1+x)1(1+x)pour; >0.

3) Calculer les integrales suivantes :

(a)R+1

0x2exdx

(b)R+1 e

11(log(z))2zdz

(c) R1

01(2x)(1+x)dx

(d) R=4 0cos

2(x)+sin2(x)cos

2(x)dx.

4) Integrales de Wallis

Pour toutn2N, on pose :

I n=Z =2 0 sinn(x)dx : (a) CalculerI0etI1. (b) Donner une relation de recurrence entreInetIn+2. (c) En deduire que :

8p2N; I2p=(2p1)(2p3):::12p(2p2):::22

etI2p+1=2p(2p2):::2(2p+ 1)(2p1):::1: (d) Montrer que8p2N;I2p+16I2p6I2p1. En deduire que limp!+1I 2pI

2p+1= 1.

(e) En deduire la formule de Wallis : lim p!+11p

2p(2p2):::2(2p1)(2p3):::1

2 (f) Montrer que8n2N,Inn!+1p 2n.

1.2.2 Corriges

(1) (a)f([3;1]) = [1;9],f([3;1]) = [0;9],f(]3;1]) = [0;9[. (b)f1(] 1;2]) = [p2;p2],f1(]1;+1[) =] 1;1[[]1;+1[,f1(]1;0][ [1;2[) =f0g[]p2;1][[1;p2[. (2) (a) sin(x)log(1+x)x!0+xx = 1!x!0+1 (b) 1 +2x x=exlog(1+2x )etxlog1 +2x x!+12xx !x!+12 donc par continuite de la fonction exp :1 +2x x!x!+1e2 (c)

1cos(x)xsin(x)=(x2=2)+o(x2)x

2+o(x2)x!0x

22x2= 1=2

(d)

1(1+x)1(1+x)=x+o(x)x+o(x)x!0xx

(a) on integre par parties : Z +1 0 x2exdx= [x2ex]+10+Z +1 0

2xexdx

= 0 + [2xex]+10+Z +1 0 2exdx = [2ex]+10= 2 (b) changement de variable :t= log(z),z=et,dz=etdt Z +1 e

11(log(z))2zdz=Z

+1 11t 2dt = [1=t]+11= 1

4CHAPITRE 1. DENOMBREMENT (RAPPELS)

(c) on decompose

1(2x)(1+x)=1=32x+1=31+x(toujours possible pour une fraction ratio-

nelle a p^oles simples) et donc : Z 1

01(2x)(1 +x)dx=

13 log(2x) +13 log(1 +x) 1 0 =13 log(4) (d) changement de variable :t= tan(x),x= arctan(t),dx=11+t2dt Z =4 0cos

2(x) + sin2(x)cos

2(x)dx=Z

=4 0

1 + tan2(x)dx

= [tan(x)]=4 0= 1 (3) (a)I0=R=2

01dx=2

,I1=R=2

0sin(x)dx= [cos(x)]=2

0= 1. (b) On integre par parties pour toutn>2 : I n+2=Z =2 0 sinn+1(x)sin(x)dx = [sinn+1(x)cos(x)]=2

0+ (n+ 1)Z

=2 0 sinn(x)cos2(x)dx = (n+ 1)(InIn+2) d'ouIn+2=n+1n+2In. (c) Demonstration par recurrence de la formule pourI2p(demonstration similaire pour I

2p+1) :

| c'est vrai enp= 0 | si c'est vrai jusqu'au rangpalorsI2p+2=2p+12p+2I2p=(2p+1)(2p1):::1(2p+2)(2p):::22 (d)8p2N,8x2[0;=2], 06sin2p+1(x)6sin2p(x)6sin2p1(x) donc par integration

8p2N,I2p+16I2p6I2p1, donc 16I2pI

2p+16I2p1I

2p+1=2p+12p, donc

lim p!+1I 2pI

2p+1= 1

(e) on deduit de la question precedente : lim p!+12 h (2p1)(2p3):::12p(2p2):::2i

2(2p+ 1) = 1,

d'ou la formule de Wallis (f) On fait la demonstration pournimpair . Soitn= 2p+ 1 : I

2p+1=2p(2p2):::2(2p+ 1):::1

pp

2p+ 1s1

p

2p(2p+ 2):::2(2p1):::1

2 p!+11p2(2p+ 1)p :

Chapitre 2

Theorie de la mesure

La theorie de la mesure est l'outil utilise pour modeliserle hasard.

2.1 Tribus et mesures

2.1.1 Tribus

Dans la suite, on utilisera un ensemble

que l'on appellera univers. Il contient tous les aleas possibles.

Denition 2.1.1.Une familleAde parties de

est une tribu (sur ) si elle verie 1. 2 A

2.A2 A )Ac2 A(stabilite par passage au complementaire)

3.A0;A1;A2; 2 A ) [n>0An2 A(une reunion denombrable d'elements deAest

dansA)

Remarque 2.1.2.On rappelle que :

|Ac:=fx2 :x =2Ag | Une tribu est un ensemble de parties. Ces parties sont appelees evenements. Proposition 2.1.3.Stabilite par intersection denombrable.

SoientAune tribu etA0;A1;A2; 2 A, alors\n>0An2 A.

Demonstration.On note pour toutn,Bn=Acn. Donc, par denition d'une tribu,Bn2 A;8n et[n>0Bn2 A. n>0An=\n>0Bcn n>0Bn c ( par denition )2 A:Exemple 2.1.4.Pour n'importe quel ensemble ,A=f;; gest une tribu.

Exemple 2.1.5.Pour n'importe quel ensemble

, ,A=P( )(les parties de ) est une tribu.

Proposition 2.1.6.SoitA P(

), il existe une tribu notee(A)telle que siBest une tribu telle queA Balors(A) B. On dira que(A) est la plus petite tribu contenantA, ou encore que(A) est la tribu engendree parA. 5

6CHAPITRE 2. THEORIE DE LA MESURE

Denition 2.1.7.Soit l'ensemble de parties deR[ f+1;1gsuivant :

A=f]a;b[:a;b2R[ f+1;1gg

(c'est l'ensemble des intervalles ouverts). La tribu(A)s'appelle la tribu des boreliens et se noteB(R). Exemple 2.1.8.Soit[a;b]intervalle ferme deR. Les intervalles]1;a[,]b;+1[sont dans B(R). La familleB(R)est une tribu donc] 1;a[[]b;+1[2 B(R)(stabilite par reunion denombrable), et donc aussi(] 1;a[[]b;+1[)c= [a;b]2 B(R)(stabilite par passage au complementaire). De m^eme, on peut montrer que tous les intervalles deRsont dansB(R), ainsi que tous les singletons (les ensembles de la formefxg,x2R).

2.2 Mesures

Notation 2.2.1.Dans le calcul des mesures, on adopte les conventions de calcul suivantes (qui ne sont pas valables ailleurs) :8x2R,x+1= +1,0 1= 0.

Denition 2.2.2.Soit

un ensemble muni d'une tribuA. On dit queest une mesure (positive) sur(quotesdbs_dbs47.pdfusesText_47