[PDF] [PDF] Exercices et Contrôles Corrigés de Mécanique du Point Matériel

1 1 5 Exercice Un véhicule, que l'on peut considérer comme un point matériel M, se déplace par 1 2 2 Corrigé : Différentielle et dérivée d'un vecteur unitaire



Previous PDF Next PDF





[PDF] Exercices et examens résolus: Mécanique du point matériel

2- Pour quelles valeurs de a les vecteurs (1,0,a), (a,1,0) et (0,a,1) sont-ils coplanaires ? Corrigé : On commence par normer le vecteur donné Un vecteur unitaire 



[PDF] Travaux dirigés corrigés Mécanique du Point Matériel, FILIÈRE

Cinématique du Point Matériel et changement de référentiel Exercice 1 Les coordonnées d'un point matériel M dans un repère orthonormé direct )k,j,i,O(R ооо



[PDF] Exercices et Contrôles Corrigés de Mécanique du Point Matériel

1 1 5 Exercice Un véhicule, que l'on peut considérer comme un point matériel M, se déplace par 1 2 2 Corrigé : Différentielle et dérivée d'un vecteur unitaire



[PDF] Cinématique et dynamique du point matériel (Cours et exercices

forces centrales À la fin de ce polycopié, nous proposons quelques exercices corrigés Page 6 Calcul vectoriel



[PDF] Les cours de mécanique du point matériel

100 EXERCICES CORRIGES MECANIQUE DU POINT MATERIEL Afin de déterminer la position instantanée d'un point matériel, nous devons choisir



[PDF] Mécanique du point - USTO

Ce polycopie regroupe une série de cours sur la mécanique du point matériel, il est A la fin de chaque chapitre, on propose des exercices avec leurs solutions de mécanique du point, , USTHB, www usthb dz/fphy/IMG/ pdf /examens pdf



[PDF] Stratégie de résolution dexercice en mécanique du point matériel

21 sept 2007 · Corrigé d'un TD de mécanique du point matériel en première année PDF car le PFD n'est pas appliqué à un solide déformable (ici M+m)



[PDF] Mécanique du point

des cours résumés suivis d'exercices corrigés pas à pas Optique géométrique R Taillet Définition : Dans un référentiel, la trajectoire d'un point matériel est

[PDF] mecanique du point materiel pdf

[PDF] mecanique du point resumé

[PDF] mécanique du solide cours

[PDF] mécanique du solide cours mp

[PDF] mécanique du solide exercices corrigés

[PDF] mecanique du solide exercices corrigés pdf

[PDF] mécanique du solide indéformable

[PDF] mecanique du solide resume

[PDF] mecanique du solide torseurs exercices corrigés pdf

[PDF] mécanique dynamique cours

[PDF] mécanique dynamique exercices corrigés

[PDF] mécanique générale cours et exercices corrigés download

[PDF] mecanique generale exercice corrigé

[PDF] mécanique l1 exercices corrigés

[PDF] mécanique quantique cours

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

CHAPITRE1

Rappels et compléments mathématiques

1.1 Exercices

1.1.1

Opérations sur les vecteurs

On donne trois vecteurs?A(3,2⎷2,⎷3),?B(2,⎷3,⎷2) et?C(1,2,2).

1. Calculer les normes??A?,??B?et??C?. En d´eduire les vecteurs unitaires?uA,?uB

et?uCdes directions, respectivement, de?A,?Bet?C.

2. Calculer cos(

??uA,?uB), cos(??uB,?uC) et cos(??uC,?uA), sachant que les angles sont com- pris entre 0 etπ.

3. Calculer les composantes des vecteurs?e1=?uB??uC,?e2=?uC??uAet?e3=?uA??uB.

4. En d´eduire sin(

??uA,?uB), sin(??uB,?uC) et sin(??uA,?uC). V´erifier ces r´esultats en utili- sant la question 2.

5. Montrer que?e1,?e2,?e3peuvent constituer une base. Cette base est-elle orthogo-

nale, norm´ee?

1.1.2Différentielle et dérivée d"un vecteur unitaire

SoitR(O,?i,?j,?k) un rep`ere cart´esien et consid´erons la base sph´erique (?er,?eθ,?e?).

1. Exprimer les vecteurs de la base sph´erique dans la base cart´esienne.

2. Calculer

∂?e r 3

Rappels et compl´ements math´ematiques

3. En d´eduired?er,d?eθetd?e?dans la base sph´erique.

4. Montrer que les diff´erentielles des vecteurs de la base sph´erique peuvent se mettre

sous la forme d?e en pr´ecisant l"expression du vecteur rotation ?Ω des vecteurs de la base sph´erique par rapport `aR. D´eduire les d´eriv´ees par rapport au temps des vecteurs de la base sph´erique par rapport `aR.

5. On consid`ere la base cylindrique (?eρ,?e?,?k) . Quel est son vecteur rotation par

rapport `aR? En utilisant les r´esultats pr´ec´edents, calculer la d´eriv´ee par rapport

au temps des vecteurs de la base cylindrique par rapport `aR.

6. Consid´erons un vecteur

?V=Vr?er+Vθ?eθ+V??e?. En utilisant les r´esultats pr´ec´e- dents, calculer la d´eriv´ee par rapport au temps de ?Vpar rapport `aR

1.1.3Déplacement élémentaire

On se propose de traiter dans cet exercice le d´eplacement ´el´ementaire dans les trois

syst`emes de coordonn´ees, cart´esiennes, cylindriques et sph´eriques et ce en utilisant les

r´esultatsde l"exercice 2

Consid´erons un rep`ere cart´esienR(O,?i,?j,?k). Soient (?eρ,?e?,?k) et (?er,?eθ,?e?) respective-

ment les bases cylindrique et sph´erique. SoitMun point rep´er´e par--→OMpar rapport `a

R. On consid`ere un d´eplacement infinit´esimal deMenM?tel queM?est tr`es proche de

M. On note alors le d´eplacement ´el´ementaire par--→OM?---→OM=d---→MM?=d--→OM

1. Dans le rep`ere cart´esien,--→OM=x?i+y?j+z?k. Calculer le d´eplacementd--→OMpar

rapport `aRdans la base cart´esienne.

2. Rappeler le vecteur rotation de la base cylindrique par rapport `aR. Partant de--→OM=ρ?eρ+z?k, calculer le d´eplacementd--→OMpar rapport `aRdans la base

cylindrique.

3. Rappeler le vecteur rotation de la base sph´erique par rapport `aR. Dans la base

sph´erique--→OM=r?er, calculer le d´eplacementd--→OMpar rapport `aRet ce dans cette base.

1.1.4Tube cathodique

On ´etudie le mouvement des ´electrons dans le tube cathodique d"un osilloscope. Les ´electrons arrivent enOavec une vitesse?v0=v0?iet traversent les plaques de d´eviation P

1etP2de longueurl. Les ´electrons sont soumis entre les plaques de d´eviation`a une

acc´el´eration uniforme?γ0=γ0?jet sont d´evi´es, figure ci-dessous. L"´ecran est `a la distance

D= 5lde la sortie des plaques. On exprime dans le reste de l"exercice les grandeurs vectorielles dans la base cart´esienne. la vitesse de la particule `a la sortie des plaques est?vAet fait un angleαavec?i. L"acc´el´eration des ´electrons entre les pointsAetEest nulle. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices5

1. Etablir les ´equations horaires du mouvement

des ´electrons entre les plaques de d´eviation, x(t) ety(t). En d´eduire l"´equation de la tra- jectoirey=f(x).

2. Calculer la vitesse des ´electrons au pointA,

?v

A, en fonction dev0,letγ0. En d´eduire

l"angleα=?(?i,?vA).

3. Quelle est la nature de la trajectoire des ´elec-

trons entreAetE? En d´eduire les ´equations horairesx(t) ety(t). D´eterminer la d´eviation

δen fonction dev0,letγ0.

y xO j i 1P 2 P l D=5lδ E Aα

1.1.5Exercice

Un v´ehicule, que l"on peut consid´erer comme un point mat´erielM, se d´eplace par

rapport `a un r´ef´erentielR(O,xyz) avec un mouvement de translation uniforme de vitesse?V(M/R) telle que|?V(M/R)|=v. Le v´ehicule roule sur une bosse dont le profil peut

ˆetre repr´esent´e pary=f(x). On s"int´eresse au segment de la route [A,B].

1. Calculer la vitesse?V(M/R) en fonction

de xet de la d´eriv´ee premi`eref?(x) = df(x)/dxpar rapport `ax.

2. Calculer l"acc´el´eration?γ(M/R). En d´e-

duire que la composante de l"acc´el´eration selonOypeut se mettre sous la forme y(M/R) =v2f??(x) (f?2+ 1)2 f ??(x) ´etant la d´eriv´ee seconde def(x) par rapport `ax. AB M y x O y=f(x)

1.1.6Opérations sur les vecteurs : une autre approche

L"objectif de cet exercice est de reformuler les expressions des op´erations vectorielles en utilisant la

fonction de Kroneckerδij1et le tenseur de Levi-Civita?ijk2.Les indicesi,j,k? {1,2,3}´etant donn´e

que l"on travaille dans un espace vectoriel de dimension 3.

1. la fonction de Kronecker est d´efinie par

ij=?1 sii=j

0 si non

2. Le tenseur de Levi-Civita est d´efini par

ijk=???0 si au moins deux indices sont ´egaux1 si (i,j,k)?{(1,2,3),(2,3,1),(3,1,2)} -1 si (i,j,k)?{(1,3,2),(2,1,3),(3,2,1)}. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

On consid`ere un rep`ereRmuni de la base orthonorm´ee (?e1,?e2,?e3). La propri´et´e d"or- thonormalit´e de la base se traduit par?ei·?ej=δij, qui seront utilis´es dans la suite

de l"exercice, sauf mention contraire. Soient trois vecteurs?A(a1,a2,a3),?B(b1,b2,b3) et?C(c1,c2,c3).

1. Montrer que le produit scalaire

?A·?B=? i=1,3aibi.

2. Sachant que lai`emecomposante de?A??Bpeut s"´ecrire comme suit (?A??B)i=?3j,k=1?ijkajbk, en d´eduire que

A??B=?

i,j,k? ijkajbk?ei.

3. Montrer que le produit mixte

A·(?B??C) =?

i,j,k? ijkaibjck.

4. En utilisant le r´esultat de la question 2, montrer

A?(?B??C) = (?A·C)?B-(?A·B)?C

5. Montrer que

??A??B?

·??C??D?

=??A·?C???B·?D? -??A·?D???B·?C?

1.1.7Exercice : Opérations sur les vecteurs

On donne les trois vecteurs?V1(1,1,0),?V2(0,1,0) et?V3(0,0,2).

1. Calculer les normes??V1?,??V2?et??V3?. En d´eduire les vecteurs unitaires?v1,?v2

et?v3des directions respectivement de?V1,?V2et de?V3.

2. Calculer cos(

??v1,?v2), sachant que l"angle correspondant est compris entre 0 etπ.

3. Calculer?v1·?v2,?v2??v3et?v1·(?v2??v3). Que repr´esente chacune de ces trois

grandeurs?

1.1.8Exercice : Différentielle et dérivée d"un vecteur unitaire

Consid´erons la position d"un pointMdans le rep`ereR(O,xyz). Soient (?i,?j,?k),

(?eρ,?e?,?k) et (?er, ?eθ, ?eφ) respectivement les bases cart´esienne, cylindrique et sph´erique

associ´ees `a ce rep`ere. Le tenseur poss`ede les propri´et´es suivantes, que l"on neva pas d´emontrer i,j? ijk?ijl=δklet? i? ijk?ilm=δjlδkm-δjmδkl. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices7

1. Calculer

∂?e

2. En d´eduired?eρetd?e?dans la base cart´esienne.

3. Montrer que les diff´erentielles des vecteurs de la base cylindrique peuvent se

mettre sous la forme d?e

ρ=dt?Ω??eρetd?e?=dt?Ω??e?

en pr´ecisant l"expression du vecteur rotation ?Ω des vecteurs de la base cylindrique par rapport `aR. D´eduire les d´eriv´ees par rapport au temps des vecteurs de la base cylindrique dansR.

4. Quel est le vecteur rotation de la base sph´erique par rapport `aR? En utilisant

les r´esultats de la question pr´ec´edente, d´eduire les expressions de d?e r dt,d?eθdtetd?eφdt.

1.1.9Exercice : Mouvement rectiligne

On effectue un test d"acc´el´eration sur une voiture arrˆet´ee au d´epart (vitesse initiale

v

0= 0). La route est rectiligne.

1. La voiture est chronom´etr´ee `a 20sau bout d"une distanceD= 140m.

1-a)D´eterminer l"expression de l"acc´el´erationγ, supos´ee constante.

1-b)D´eterminer l"expression de la vitessevDatteinte `a la distanceD.

2. Calculer la distance d"arrˆetLpour une d´ec´el´eration de 8ms-2?

1.1.10Exercice : Excès de vitesse

Un conducteur roule `a une vitesse constantev0= 120 km h-1sur une route r´ecti-

ligne d´epassant la limite autoris´ee. Un gendarme `a moto d´emarre `a l"instant o`u la voiture

passe `a sa hauteur et acc´el`ere uniform´ement. Le gendarme atteint la vitesse 100 km h-1 au bout de 12s.

1. Quel sera le temps n´ecessaire au gendarme pour rattraperla voiture?

2. Quelle distance aura-t-il parcourue?

3. Quelle vitesse aura-t-il atteinte?

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

1.1.11Exercice : Mouvement circulaire uniforme

Consid´erons un satellite g´eostationnaire en mouvement circulaire uniforme autour de la Terre sur une orbite de rayonr. Il est soumis `a une acc´el´erationγ=g0?R r?

2, o`u

g

0= 9.81m s-2etR= 6400 km , le rayon de la Terre. La p´eriode de r´evolution du

satellite est ´egale `a la p´eriode de rotation de la Terre sur elle mˆeme.

1. Calculer la p´eriodeTde rotation de la Terre en secondes. En d´eduire la vitesse

angulaire Ω.

2. D´eterminer l"altitude de l"orbite g´eostationnaire.

1.1.12Exercice : Mouvement sur une ellipse

Un point mat´erielMse d´eplace sur une ellipse d"´equation en coordonn´ees cart´esiennes x2 a2+y2b2= 1, voir figure ci-contre. la direction de--→OMpar rapport `a l"axeOxest rep´er´ee par l"angle?. L"´equation horaire du mouvement deMpeut se mettre sous la forme x(t) =x0cos(ωt+φ) ety(t) =y0sin(ωt +ψ) o`u l"on suppose queωest une constante. A l"instantt= 0,

Mse trouvait enM0.

y xO M 0 M a b

1. D´eterminerx0,φetψ. En d´eduirey0.

2. D´eterminer les composantes, et ce dans la base cart´esienne, de la vitesse (x,y) et

de l"acc´el´eration (¨x,¨y).

3. Montrer que l"acc´el´eration peut se mettre sous la forme?γ=-k--→OMo`ukest `a

d´eterminer. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.2 Solutions9

1.2 Solutions

1.2.1

Corrigé 1 : Opérations sur les vecteurs

1. Soit un vecteur?V= (v1,v2,v3). On sait que la norme est donn´ee par??V?=??

i=1,3v2i. En appliquant ce r´esultat aux trois vecteurs?A(3,2,⎷3),?B(2,⎷3,⎷2) et ?C(1,2,2) , on obtient ?A?=?

32+ 22+⎷32= 4

?B?=?

22+⎷32+⎷22= 3

?C?=?

12+ 22+ 22= 3

On sait que le vecteur unitaire?uVde la direction du vecteur?V, est d´efinie par ?u V=?V /??V?. De la mˆeme mani`ere, en appliquant ce r´esultat, on obtient ?u A= (3

4,12,⎷

3 4) ?u B= (2

3,⎷

3

3,⎷

2 3) ?u C= (1

3,23,23)

2. Pour d´eterminer les cosinus des angles entre les trois vecteurs pris deux `a deux,

nous utilisons la d´efinition du produit scalaire suivante ?A·?B=??A???B?cos(??A,?B), ce qui donne cos( ??A,?B) =?A·?B ??A???B?

3×2 + 2×⎷

3 +⎷3×⎷2

4×3

?0.993 de mˆeme cos( ??B,?C) =?B·?C ??B???C?

2×1 +⎷

3×2 +⎷2×2

3×3

?0.921 Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

et enfin cos( ??C,?A) =?C·?A ??C???A?

1×3 + 2×2 + 2×⎷

3

3×4

?0.872

3. On sait que les composantes du vecteur produit vectoriel entre?uBet?uCsont

donn´ees par ?e

1=?uB??uC

3

323⎷2

323?????

,-?????2

313⎷2

323?????

,?????2

313⎷3

323??????

2(⎷

3-⎷2)

9,⎷

2-4

9,4-⎷

3 9? de mˆeme ?e

2=?uC??uA

?2 3122

3⎷

3

4?????

,-?????1 3342

3⎷

3

4?????

,????1 3342

312?????

2(⎷

3-2)

12,6-⎷

3

12,-13?

et ?e

3=?uA??uB

?1

2⎷

3

3⎷3

4⎷

2

3?????

,-?????3

423⎷3

4⎷

2

3?????

,?????3 4231

2⎷

3

3??????

2⎷

quotesdbs_dbs22.pdfusesText_28