[PDF] [PDF] FONCTION DERIVÉE - maths et tiques

1 x2 II Opérations sur les fonctions dérivées Exemple : Soit la fonction f définie sur R par f (x) = x + x2 u et v sont deux fonctions dérivables sur un intervalle I



Previous PDF Next PDF





[PDF] Tableau des dérivées élémentaires et règles de - Lycée dAdultes

1 Dérivation des fonctions élémentaires Fonction Df Dérivée Dérivée du produit (uv) = u v + uv Dérivée de l'inverse (1 u ) = − u u2 Dérivée du quotient (u



[PDF] Fiche : Dérivées et primitives des fonctions usuelles - Institut de

(ln u)′ = u′ u En particulier,si u > 0 : ∀a ∈ R, (ua)′ = αu′ua−1 Primitives des fonctions usuelles Dans chaque ligne, F est une primitive de f sur 



[PDF] Tableaux des dérivées

Domaine de dérivabilité Dérivée ln(x) R +,∗ 1 x ex R ex xα,α ∈ R R +,∗ αxα −1 u u 2 √ u ln(u) u u exp(u) u exp(u) cos(u) −u sin(u) sin(u) u cos(u) 1 



[PDF] Tableaux des dérivées Dérivées des fonctions usuelles Notes

Dérivées des fonctions usuelles Notes Fonction f Fonction dérivée f ' Intervalles de dérivabilité P f (x) = k (constante réelle) f ' (x) = 0 ℝ 1 U f (x) = x f ' (x) = 1



[PDF] Formulaire de dérivées - Maths-francefr

Formulaire de dérivées Dérivées des fonctions usuelles Fonction Dérivée Domaine de définition Domaine de dérivabilité xn, n ∈ N∗ nxn−1 R R 1 x − 1



[PDF] FORMULAIRE DERIVEES ET PRIMITIVES USUELLES

1) Opérations sur les dérivées Soient u et v deux fonctions dérivables sur un intervalle I à valeurs réelles Soit λ ∈ R Alors : • La fonction u + v est dérivable sur 



[PDF] FONCTION DERIVÉE - maths et tiques

1 x2 II Opérations sur les fonctions dérivées Exemple : Soit la fonction f définie sur R par f (x) = x + x2 u et v sont deux fonctions dérivables sur un intervalle I



[PDF] Dérivées usuelles On admet les formules de dérivation pour les

Dérivée Dérivabilité Somme f = u + v f' = u' + v' dérivable sur l'intervalle I Produit f = ku f' = ku' dérivable sur l'intervalle I f = uv f' = u'v+uv' Quotient f = 1 v f' = –



[PDF] DÉRIVÉES USUELLES ET DIFFÉRENTIELLES

1/1 derivees doc DÉRIVÉES USUELLES ET DIFFÉRENTIELLES DÉRIVÉES FONDAMENTALES Fonction Dérivée 1 Dérivée 2 Différentielle y = u(x) y' = u'(x )



[PDF] Dérivée et différentielle

1 – Signification géométrique de la dérivée en x0 de la fonction f 1 dx/du 1 3 2 Dérivées des fonctions logarithmes et exponentielles d dx ln u = u′ u d dx eu

[PDF] dérivée d une intégrale généralisée

[PDF] dérivée d'une fonction exercices corrigés

[PDF] dérivée d'une intégrale ? bornes variables

[PDF] dérivée d'une intégrale ? paramètre

[PDF] dérivée d'une intégrale dépendant d'un paramètre

[PDF] dérivée d'une intégrale dépendant de ses bornes

[PDF] dérivée exercices corrigés pdf

[PDF] dérivée fonction composée

[PDF] dérivée formule

[PDF] dérivée ln(u/v)

[PDF] dérivée nombre complexe

[PDF] dérivée racine de u

[PDF] dérivée u/v

[PDF] dérivée u^n

[PDF] dériver une intégrale impropre

[PDF] FONCTION DERIVÉE - maths et tiques

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION DERIVÉE I. Dérivées des fonctions usuelles Exemple : Soit la fonction f définie sur

par f(x)=x 2 . Calculons le nombre dérivé de la fonction f en un nombre réel quelconque a. Pour h≠0 f(a+h)-f(a) h a+h 2 -a 2 h a 2 +2ah+h 2 -a 2 h =2a+h Or : lim h→0 f(a+h)-f(a) h =lim h→0

2a+h=2a

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur

une fonction, notée f ' dont l'expression est f'(x)=2x

. Cette fonction s'appelle la fonction dérivée de f. Le mot " dérivé » vient du latin " derivare » qui signifiait " détourner un cours d'eau ». Le mot a été introduit par le mathématicien franco-italien Joseph Louis Lagrange (1736 ; 1813) pour signifier que cette nouvelle fonction dérive (au sens de "provenir") d'une autre fonction. Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel x de I. Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée fonction dérivée de f et se note f '. Formules de dérivation des fonctions usuelles : Fonction f Ensemble de définition de f Dérivée f ' Ensemble de définition de f '

f(x)=a a∈! f'(x)=0 f(x)=ax a∈! f'(x)=a f(x)=x 2 f'(x)=2x f(x)=x n n≥1 entier f'(x)=nx n-1 f(x)= 1 x \{0} f'(x)=- 1 x 2 \{0} f(x)= 1 x n n≥1 entier \{0} f'(x)=- n x n+1 \{0} f(x)=x

0;+∞

f'(x)= 1 2x

0;+∞

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemples : Vidéo https://youtu.be/9Mann4wOGJA 1) Soit la fonction f définie sur

par f(x)=x 4 alors f est dérivable sur et on a pour tout x de f'(x)=4x 3 . 2) Soit la fonction f définie sur \{0} par f(x)= 1 x 5 alors f est dérivable sur -∞;0 et sur

0;+∞

et on a pour tout x de \{0}, f'(x)=- 5 x 6 . Démonstration pour la fonction inverse : Soit la fonction f définie sur \{0} par f(x)= 1 x . Pour h≠0 et h≠-a f(a+h)-f(a) h 1 a+h 1 a h a-a-h a(a+h) h 1 a(a+h) Or : lim h→0 f(a+h)-f(a) h =lim h→0 1 a(a+h) 1 a 2 Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 1 a 2 . Ainsi, pour tout x de \{0}, on a : f'(x)=- 1 x 2 . II. Opérations sur les fonctions dérivées Exemple : Soit la fonction f définie sur par f(x)=x+x 2 . Pour h≠0 f(a+h)-f(a) h a+h+a+h 2 -a-a 2 h a+h+a 2 +2ah+h 2 -a-a 2 h h+2ah+h 2 h =1+2a+h donc lim h→0 f(a+h)-f(a) h =lim h→0

1+2a+h=1+2a

alors f est dérivable sur et on a pour tout x de f'(x)=1+2x

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frOn pose pour tout x de

u(x)=x et v(x)=x 2 . On a ainsi : f(x)=u(x)+v(x) . Pour tout x de u'(x)=1 etquotesdbs_dbs2.pdfusesText_2