[PDF] Cours de Mathématiques

Cours de Mathématiques Sup MPSI PCSI PTSI TSI En partenariat avec l' association 



Previous PDF Next PDF





Exo7 - Cours de mathématiques - Emathfr

t exercices de maths Voici la définition mathématique de la continuité d 'une fonction



cours

atique 3 Théorèmes : nous en utiliserons beaucoup également dans ce cours Un théorème est



Cours de Mathématiques

Cours de Mathématiques Sup MPSI PCSI PTSI TSI En partenariat avec l' association 



COURS DE MATHÉMATIQUES PREMI`ERE - IMJ-PRG

ction et présentation page 2 1 Le langage mathématique page 4 2 Ensembles et applications



Cours complet de mathématiques pures par L - Gallica - BnF

gallica bnf / Bibliothèque nationale de France Cours complet de mathématiques pures T 1 /



Cours de mathématiques

ité est un concept mathématique que nous verrons plus loin Paradoxe de la divisibilité



Mathématiques - Université de Strasbourg

PDF, ainsi qu'une version gratuite de ce livre assurer de votre bonne progression dans le cours, avec ce ba- filière mathématique à l'université qu'il connaisse le contenu



MATHÉMATIQUES DE BASE (MIS 101, cours 2007-2008)

mathématique constructive (donc implémentable sur une machine) que l'on appelle un 

[PDF] cours de mathematique 1ere année bac ste

[PDF] cours de mathematique bts industriel pdf

[PDF] cours de mathematique gratuit pdf

[PDF] cours de mathematique terminale serie d pdf

[PDF] cours de mathématiques 3ème

[PDF] cours de mathématiques terminale s pdf

[PDF] cours de maths 1ere année universitaire st

[PDF] cours de maths 1ere d pdf

[PDF] cours de maths 1ere s pdf

[PDF] cours de maths 1ere s video

[PDF] cours de maths 3ème pdf gratuit

[PDF] cours de maths cm1 pdf

[PDF] cours de maths college pdf

[PDF] cours de maths cp pdf

[PDF] cours de maths en anglais pdf

Cours de Mathématiques

Sup MPSI PCSI PTSI TSI

En partenariat avec l'association Sésamath http://www.sesamath.net et le site http://www.les-mathematiques.net

Document en cours de relecture

Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron

23 mars 2011

Table des matières1 Nombres complexes19

1.1 Le corpsCdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 20

1.1.2 Construction deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Propriétés des opérations surC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Partie réelle, partie imaginaire d'un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

1.3 Représentation géométrique des complexes . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Représentation d'Argand . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 23

1.3.2 Interprétation géométrique de quelques opérations .. . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Module d'un nombre complexe, inégalités triangulaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 GroupeUdes nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 26

1.6 Argument, fonction exponentielle complexe . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.1 Argument d'un nombre complexe . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 31

1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 32

1.7 Racinesn-ièmes de l'unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 33

1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 35

1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 35

1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 36

1.9 Nombres complexes et géométrie plane . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 37

1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 37

1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 37

1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 38

1.10 Transformations remarquables du plan . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 38

1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 38

1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 39

1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 42

1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 42

1.11.2 Polynômes, équations, racines de l'unité . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 43

1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 49

1.11.4 Application des nombres complexes à la géométrie . . .. . . . . . . . . . . . . . . . . . . . . . . . 53

1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 60

2 Géométrie élémentaire du plan62

2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 63

2.1.2 Produit d'un vecteur et d'un réel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 63

2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 64

2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 64

2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 64

2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 64

2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 67

2

Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 68

2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 69

Équation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 70

2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 70

2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 70

2.3.2 Interprétation en terme de projection . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 70

2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 71

2.3.4 Interprétation en termes de nombres complexes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 72

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 72

2.4.2 Interprétation en terme d'aire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 73

2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 73

2.4.4 Interprétation en terme de nombres complexes . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 74

2.4.5 Applicationdudéterminant: résolutiond'unsystèmelinéairede Cramer dedeuxéquationsà deux

inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 74

2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 75

2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 75

2.5.2 Lignes de niveau deMu.AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.3 Lignes de niveau deMdet

u,AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.4 Représentation paramétrique d'une droite . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 76

2.5.5 Équation cartésienne d'une droite . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 77

2.5.6 Droite définie par deux points distincts . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.7 Droite définie par un point et un vecteur normal . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.8 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 78

2.5.9 Équation normale d'une droite . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 79

2.5.10 Équation polaire d'une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 80

2.5.11 Intersection de deux droites, droites parallèles . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 81

2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 81

2.6.2 Équation cartésienne d'un cercle . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 81

2.6.3 Représentation paramétrique d'un cercle . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 82

2.6.4 Équation polaire d'un cercle passant par l'origine d'un repère . . . . . . . . . . . . . . . . . . . . . 83

2.6.5 Caractérisation d'un cercle par l'équationMA.MB0. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.6 Intersection d'un cercle et d'une droite . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 84

2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 87

2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 87

2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 88

2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 95

2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 99

2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 109

2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 111

3 Géométrie élémentaire de l'espace113

3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 113

3.1.1 Combinaisons linéaires de vecteurs, droites et plansdans l'espace . . . . . . . . . . . . . . . . . . 113

3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 114

3.1.3 Orientation de l'espace, base orthonormale directe .. . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Mode de repérage dans l'espace . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 116

3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 116

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 116

Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 116

Norme d'un vecteur, distance entre deux points dans un repère orthonormé . . . . . . . . . . . . . 117

3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 118

3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 119

3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 119

3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 121

3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 121

3.4.2 Interprétation géométrique du produit vectoriel . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 122

3

3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 122

Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 122

Quelques exemples d'applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 123

3.4.4 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 124

3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 124

3.5.2 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 124

3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 125

3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 126

3.6 Plans dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 127

3.6.1 Représentation paramétrique des plans . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 127

3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 127

Interprétation géométrique de l'équation normale . . . . . . .. . . . . . . . . . . . . . . . . . . . . 128

Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 129

3.6.3 Distance d'un point à un plan . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 129

Deux méthodes de calcul de la distance d'un point à un plan . . .. . . . . . . . . . . . . . . . . . 130

3.7 Droites dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.3 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 132

3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 132

3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 135

3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 135

3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 136

3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 136

3.9.2 Coordonnées cartésiennes dans l'espace . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 138

3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 147

4 Fonctions usuelles151

4.1 Fonctions logarithmes, exponentielles et puissances .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 152

4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 154

4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 156

4.1.4 Exponentielle de basea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 158

4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 159

4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.1 Rappels succincts sur les fonctions trigonométriques . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 162

4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 163

4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 165

4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 166

Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 168

4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 169

4.3.3 Fonctions hyperboliquesinverses . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 169

Fonction argument sinus hyperboliqueargsh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Fonction Argument cosinus hyperboliqueargch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Fonction Argument tangente hyperboliqueargth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 173

4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 176

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 178

4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 184

4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 193

4

5 Equations différentielles linéaires198

5.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 198

5.2 Deux caractérisations de la fonction exponentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Caractérisation par une équation différentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.2 Caractérisation par une équation fonctionnelle . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Équation différentielle linéaire du premier ordre . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 199

5.3.2 Résolution de l'équation différentielle homogène normalisée . . . . . . . . . . . . . . . . . . . . . 200

5.3.3 Résolution de l'équation différentielle normaliséeavec second membre . . . . . . . . . . . . . . . 202

5.3.4 Détermination de solutions particulières . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 203

Superposition des solutions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 203

Trois cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 203

Méthode de variation de la constante . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 205

5.3.5 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 206

5.3.6 Méthode d'Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4 Équations différentielles linéaires du second ordre . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.4.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4.2 Résolution de l'équation différentielle homogène dusecond ordre dansC. . . . . . . . . . . . . . 210

5.4.3 Résolution de l'équation différentielle homogène dusecond ordre dansR. . . . . . . . . . . . . . 212

5.4.4 Équation différentielle du second ordre avec second membre . . . . . . . . . . . . . . . . . . . . . 213

5.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 217

5.5.1 Équations différentielles linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.5.2 Équations différentielles linéaires du second ordreà coefficients constants . . . . . . . . . . . . . . 221

5.5.3 Résolution par changement de fonction inconnue . . . . .. . . . . . . . . . . . . . . . . . . . . . . 222

5.5.4 Résolution d'équations différentielles par changement de variable . . . . . . . . . . . . . . . . . . 224

5.5.5 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 225

5.5.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 227

6 Étude des courbes planes230

quotesdbs_dbs14.pdfusesText_20