[PDF] Cours dalgèbre pour la 1ere année

ématiques de premières années LMD Sciences et techniques Le Cours d'Algèbre -3-



Previous PDF Next PDF





COURS DE MATHÉMATIQUES PREMI`ERE ANNÉE (L1

ction et présentation page 2 1 Le langage mathématique page 4 2 Ensembles et applications



Cours danalyse 1 Licence 1er semestre

< 0, il y a un probl`eme Grâce aux nombres complexes on peut donner un sens mathématique aux 



Algèbre - Cours de première année - Exo7 - Cours de

ns de partir à la découverte des maths, de leur logique et de leur beauté et un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties d'un cours 





Cours dAlgèbre I et II avec Exercices CorrigésOM DE - USTO

2019 — Faculté des Mathématiques et Informatique d'Algèbre linéaire de la 1ère année universitaire Le lecteur trouvera une partie cours qui a (5) A st dite symétrique si A = At Exemple 3 2





Cours dalgèbre pour la 1ere année

ématiques de premières années LMD Sciences et techniques Le Cours d'Algèbre -3-



Mathématiques, Semestre S1

des élèves ingénieurs de Polytech'Paris-Sud Dans ce semestre, les cours de maths s'articulent 



Cours danalyse 1ère année

1ère étape : Tout d'abord que si g : [0,1] → R est une fonction vérifiant g(0) ≤ 0 et g(1) ≥ 

[PDF] cours de maths 1ere d pdf

[PDF] cours de maths 1ere s pdf

[PDF] cours de maths 1ere s video

[PDF] cours de maths 3ème pdf gratuit

[PDF] cours de maths cm1 pdf

[PDF] cours de maths college pdf

[PDF] cours de maths cp pdf

[PDF] cours de maths en anglais pdf

[PDF] cours de maths générales 1ere année pdf

[PDF] cours de maths licence 1 eco-gestion pdf

[PDF] cours de maths première es pdf

[PDF] cours de maths première littéraire pdf

[PDF] cours de maths prépa mpsi pdf

[PDF] cours de maths terminale l

[PDF] cours de maths terminale s en ligne gratuit

Cours d"algèbre

Maths1

LMD Sciences et Techniques

Par M.Mechab

2

Avant Propos

Ceci est un avant projet d"un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques et Mathématiques et informatique. Il peut aussi être utilement utilisé par les étudiants d"autres paliers aussi bien en sciences etsciences et techniques que ceux de Biologie, Sciences économiques ou autre.

Il sera composé de trois partie.

Cette première partie est un peu les mathématiques générales La deuxième portera sur une introduction à l"algèbre linéaire La troisième au calcul matriciel, qui est en fait le but ultime de ce cours. Toutes les remarques et commentaires sont les bienvenus de la part des étudiants ainsi que de la part d"enseignants ou spécialistes en mathématiques ou utilisateurs de mathématiques. Ces remarques et commentaires nous permettront certainement d"améliorer le contenu ainsi que la présentation de la version finale.

Elles peuvent être envoyées à :

mustapha.mechab@gmail.com

Pr.Mustapha Mechab.

Table des matières

1 ELÉMENTS DE LOGIQUE5

1.1 Opérations Logiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1La négation¬:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2La Conjonction?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3La Disjonction?:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Règles de De Morgan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.5L"Implication=?:. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.6La contraposée.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.7 La réciproque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Propriétés des opérations logiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 ELÉMENTS DE LA THÉORIE DES ENSEMBLES13

2.1 Les Ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Les quantificateurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Parties d"un ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Opérations sur les ensembles. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Applications et Fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Composition d"applications. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Restriction et prolongement d"une application. . . . . . . . . . . . . . . 21

2.2.3 Images et images réciproques. . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Applications injectives, surjectives, bijectives. . . . . . . . . . . . . . . . 24

2.2.5 Fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Relations binaires29

3.1 Relations d"équivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1Décomposition d"une application. . . . . . . . . . . . . . . . . . . . 32

3.2 Relations d"ordre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Plus petit, Plus grand élément. . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Eléments Minimaux et éléments maximaux. . . . . . . . . . . . . . . . . 36

3.2.3 Borne Inférieure, Borne Supérieure. . . . . . . . . . . . . . . . . . . . . 37

Le Cours d"Algèbre.-3- ParM.Mechab

TABLE DES MATIÈRES

4 STRUCTURES ALGEBRIQUES39

4.1 Lois de Compositions Internes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Unicité de l"inverse (du symétrique). . . . . . . . . . . . . . . . . . . . . 42

4.2 Structure de Groupe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Groupes à deux éléments. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Sous groupes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Goupes Quotients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4 Homomorphismes de Groupes. . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Structure d"Anneaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Sous Anneaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Homomorphismes d"Anneaux. . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Idéaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Anneaux Quotients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Corps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Caractéristique d"un corps. . . . . . . . . . . . . . . . . . . . . . . . . . 60

Le Cours d"Algèbre.-4- ParM.Mechab

Chapitre1

ELÉMENTS DE LOGIQUE

Dans ce chapitre on se limitera à l"introduction des premiers éléments de la logique classique.

Définition 1.1On appelle proposition logique toute relationPqui est soit vraie soit fausse. •Quand la proposition est vraie, on lui affecte la valeur1 •Quand la proposition est fausse, on lui affecte la valeur0. 1 Ces valeurs sont appelées "Valeurs de vérité de la proposition".

Ainsi, pour définir une proposition logique, il suffit de donner ses valeurs de vérités. En géné-

ral, on met ces valeurs dans un tableu qu"on nommera"Table de vérités"ou"Tableau de vérités"

L"Equivalence??:On dit que deux propositions logiquesPetQsont logiquement

équivalentes, ou équivalentes, si elles ont les mêmes valeurs de vérité. On note :P ?? Q.

Sa table de vérités est donnée par :

P0011 Q0101

P ?? Q1001

Il est clair que SiO,PetQsont trois propositions logiques, alors : siOest équivalente à PetPéquivalente àQ, alorsOest équivalente àQ.

1.1 Opérations Logiques

1.1.1 La négation¬:

Etant donnée une proposition logiqueP, on appelle négation dePla proposition logique P, qu"on note aussi¬P, qui est fausse quandPest vraie et qui est vraie quandPest fausse, donc on peut la représenter comme suit :

1Le fait qu"une proposition ne peut prendre que les valeurs0ou1provient d"un principe fondamental de la

logique "classique" qui est :Le principe du tiers exclu, à savoir qu"une proposition logique ne peut pas être vraie

et fausse à la fois.

Le Cours d"Algèbre.-5- ParM.Mechab

ELÉMENTS DE LOGIQUE

P01 P10 En établissant les tables de vérités des propositions(P ?? Q)et?P ??Q?, on déduit que : (P ?? Q)???

P ??Q?(1.1)

De même, la table de vérités de

Pest la suivante :

P01 P10 P01 on voit qu"elle est identique à celle deP, par suite :

Propriété 1.1La négation de la négation d"une proposition logiquePest équivalente àP,

donc :

P ?? P

Remarque 1.1Pour définir une proposition logiqueP, il suffit de donner les situations où elle est Vraie, dans le reste des situations la propositionPétant Fausse et inversement si on connaît les situations oùPest Fausse, dans le reste des situationsPest Vraie.

1.1.2 La Conjonction?

: Etant données deux propositions logiquesPetQ, on appelle conjonction dePetQ, la proposition logiqueP ? Qqui est Vraie quandPetQsont vraies à la fois. Sa table de vérités est donnée par : Q\P01 000 101
ou P0011 Q0101

P ? Q0001

Propriété 1.2SoitPune proposition logique, alorsP ?¯Pest une proposition fausse. Preuve :Pour montrer celà, il suffit de remarque que la table de véritésdeP ?¯Pest la suivante :

P01¯P10

P ?¯P00

Le Cours d"Algèbre.-6- ParM.Mechab

M. Mechab1.1 Opérations Logiques

1.1.3 La Disjonction?:

Etant données deux propositions logiquesPetQ, on appelle disjonction dePetQ, la proposition logiqueP ? Qqui est Vraie si l"une des propositions logiquesPouQest vraie. Sa table de vérités est donnée par : Q\P01 001 111
ou P0011 Q0101

P ? Q0111

Propriété 1.3SoitPune proposition logique, alorsP ?¯Pest une proposition fausse etP ?¯P est toujours vraie. Preuve :Pour montrer celà, il suffit de remarque que la table de véritésdeP ?¯Pest la suivante :

P01¯P10

P ?¯P11

1.1.4 Règles de De Morgan

Propriété 1.4 (Règles de De Morgan)

23SoientPetQdeux propositions logiques, alors :

1.

P ? Q ??P ?Q.

2.

P ? Q ??P ?Q.

Preuve :On établit la preuve de ces règles en donnant les valeurs de vérités des propositions

logiques correspondantes. P0011 Q0101 P1100 Q1010

P ?Q1110

P ?Q1000

P ? Q0111

(P ? Q)1000

P ? Q0001

(P ? Q)1110 On voit que les propositions logiques(P ? Q)et(P ?Q)ont les mêmes valeurs de vérité, donc elles sont équivalentes. De même pour (P ? Q)etP ?Q.?

2Connues aussi sous l"appellation de :Loi de dualité.

3De Morgan Auguste: Mathématicien britannique (Madurai Tamil Nadu (Inde) 1806- Londres 1871). Il

est le fondateur avec Boole de la logique moderne.

Le Cours d"Algèbre.-7- ParM.Mechab

ELÉMENTS DE LOGIQUE

1.1.5 L"Implication=?:

Etant données deux propositions logiquesPetQ, on note(P=? Q), la proposition logique qui est Fausse siPest Vraie etQest Fausse. Quand la proposition(P=? Q)est Vraie, on dit que la propositionPimpliquela proposition Q. De cette définition, on obtient la table de vérités suivante : Q\P01 010 111
ou P0011 Q0101

P=? Q1101

Etant données deux propositions logiquesPetQ, alors la table de vérités deQ ?Pest la suivante : Q\P01 010 111
ou P0011 Q0101

Q ?P1101

On voit que cette table est identique à celle de?

P=? Q?

, donc :

P=? Q?

Q ? P? (1.2)

1.1.6 La contraposée.

Le travail des scientifiques consiste à établir à partir de certaines données ou hypothèses

d"autres propriétés. Si on notePles données ou hypothèses qu"on a etQles propriétés qu"on

veut établir, alors tout revient à démontrer que?

P=? Q?

est vraie. Ce qui nous fait dire que la tâche des mathématiques consiste en ladémonstration d"implications. Dans certaines situations, il est difficile de montrer directement l"implication?

P=? Q?

alors on essaye de donner une autre proposition équivalentequi pourrait être plus facile à établir.

Propriété 1.5Etant données deux propositions logiquesPetQ, alors les propositions sui- vantes sont équivalentes : -(P=? Q) Q=?P) La deuxième implication est appeléeContraposéede la première implication. Preuve :On donnera la preuve de cette équivalence de deux manière différentes.

1.En utilisant l"équivalence (

1.2) on obtient

Q=?P)???P ?Q?

P ? Q?

?Q ? P? ??(P=? Q)

Le Cours d"Algèbre.-8- ParM.Mechab

M. Mechab1.2 Propriétés des opérations logiques donc :(Q=?P)??(P=? Q).

2.En utilisant les valeurs de vérité des implications(P=? Q)et(

Q=?P), on obtient :

P0011 Q0101

P=? Q1101

Q1010 P1100

Q=?P1101

d"où on déduit que :(P=? Q)??(Q=?P).

1.1.7 La réciproque

Etant donnéesPetQdeux propositions logiques, on appelle laRéciroquede l"implication?quotesdbs_dbs9.pdfusesText_15