[PDF] Cours de mathématiques - terminale S - Maths au lycée

Exemples 1 Reprenons les propositions de l'exemple précédent On a, P : « ABCD 



Previous PDF Next PDF





Cours de mathématiques - terminale S - Maths au lycée

Exemples 1 Reprenons les propositions de l'exemple précédent On a, P : « ABCD 



Mathématiques Cours, exercices et problèmes Terminale S

Certains passages vont au-delà des objectifs exigibles du programme de terminale S



Mathématiques terminale S - Lycée dAdultes

Mathématiques Terminale S Tout ce qu'il faut savoir Paul Milan Page 2 Table des matières



Terminale S

aucune limite La suite est divergente 3 Page 6 Fiches de Mathématiques 1 SUITES



Exercices de mathématiques pour la classe terminale - 2e partie

les ES, S, L, STI2D, STL, STMG Exercices de mathématiques 2 e partie Classes terminales ES 



Cours de mathématiques de terminale S - Free

I Le plan complexe et les nombres complexes 7 I L'ensemble C des nombres 



Cours complet de mathématiques pures par L - Gallica - BnF

isation s'inscrit dans le cadre de la loi n°78-753 du 17 juillet 1978 : - La réutilisation non 



Cours de Mathématiques

1 11 Exercices 4 1 6 Comparaison des fonctions logarithmes, puissances et exponentielles Étude d'un point stationnaire avec des outils de terminale, première 



Programme de mathématiques pour la classe de terminale S

blèmes pourront être d'origine mathématique, physique, biologique, économique ou autre et 

[PDF] cours de maths terminale s pour les nuls

[PDF] cours de maths terminale stmg pdf

[PDF] cours de maths tronc commun bac international

[PDF] cours de mecanique (cinematique) bac marocain

[PDF] cours de mécanique des fluides niveau licence

[PDF] cours de mécanique du point matériel s1 pdf

[PDF] cours de mécanique pdf

[PDF] cours de medecine 1ere année algerie

[PDF] cours de médecine légale en pdf

[PDF] cours de microéconomie approfondie pdf

[PDF] cours de microéconomie licence 1

[PDF] cours de microéconomie licence 1 pdf

[PDF] cours de microéconomie licence 2 pdf

[PDF] cours de microéconomie première années des sciences économiques

[PDF] cours de microéconomie s1 pdf

COURS DE MATHÉMATIQUES

Terminale S

Valère BONNET(

valere.bonnet@gmail.com)

29 mai 2011

Lycée PONTUS DETYARD

13 rue des Gaillardons

71100 CHALON SUR SAÔNE

Tél. : (33) 03 85 46 85 40

Fax : (33) 03 85 46 85 59

FRANCE

ii

LYCÉEPONTUS DETYARDTerminale VI

Table des matières

Tabledes matièresiii

I Vocabulairede la logique1

I.1 Qu"est-ce qu"une proposition?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Négation d"une proposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.3 Le " et ». . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1

I.4 Le " ou ». . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 2

I.5 Propositions et parties d"un ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I.6 Lois de MORGAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

I.7 Opérations sur les parties d"un ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.8 Implications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 5

I.8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.8.2 Réciproque d"une implication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.8.3 Contraposée d"une implication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.8.4 Implication contraire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.9 Double implication ou équivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.10 Formules récapitulatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.11 Raisonnement par récurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Révisions9

II.1 Identités remarquables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2 Éléments de symétries d"une courbe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2.1 Symétries dans IR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2.2 Axe de symétrie d"une courbe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II.2.3 Centre de symétrie d"une courbe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II.3 Trigonométrie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12

II.3.1 Quelques valeurs remarquables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II.3.2 Quelques formules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II.3.3 Équations trigonométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II.4 Géométrie du triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.4.1 Aire d"un triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.4.2 Théorème des sinus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.4.3 Théorème d"ALKASHI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.4.4 Théorème de la médiane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.5 Polynômes du second degré. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.5.1 Forme canonique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.5.2 Représentation graphique et sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II.5.3 Factorisation et résolution d"équations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II.5.4 Signe d"un trinôme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II.5.5 Tableau récapitulatif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.5.6 Compléments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.5.7 Travaux dirigés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.5.8 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

II.6 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

iii ivTable des matières

III Suites numériques31

III.1 Vocabulaire de l"ordre dans IR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.1.1 Majorants, minorants .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.1.2 Théorème de la borne supérieure (complément). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.2 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 32

III.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.2.2 Composée d"une suite par une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.2.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32

III.3 Représentation graphique d"une suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.3.1 Représentation graphique d"une suite définie explicitement. . . . . . . . . . . . . . . . . . . . . . 32

III.3.2 Représentation graphique d"une suite définie par récurrence. . . . . . . . . . . . . . . . . . . . . 33

III.3.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

III.4 Suites bornées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 34

III.4.1 Généralités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

III.4.2 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

III.5 Suites monotones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

III.5.1 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

III.5.2 Méthodes d"étude du sens de variation d"une suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III.5.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

III.6 Suites arithmétiques - suites géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.6.1 Suites arithmétiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.6.2 Suites géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III.6.3 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III.7 Limites de suites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42

III.7.1 Limite finie, limite infinie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.7.2 Théorèmes de comparaisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III.7.3 Calcul algébrique de limites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

III.7.4 Limites de suites géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

III.7.5 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

III.8 Suites monotones bornées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.8.1 Théorème de convergence d"une suite monotone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.8.2 Suites adjacentes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III.8.3 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III.8.4 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51

III.9 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 51

IV Limites de fonctions, continuité53

IV.1 Limite finie (ou réelle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.1.1 Limite d"une fonction en. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.1.2 Limite d"une fonction en un réela. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.2 Notion de continuité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.3 Utilisation de la continuité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.3.1 Continuité et bijection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V Exponentielleset équationsdifférentielles57

V.1 La fonction exponentielle de base e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V.1.1 Propriété fondamentale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V.1.2 Sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V.1.3 Autres propriétés algébriques de l"exponentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V.1.4 Quelques limites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V.2 La fonction logarithme népérien. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

V.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

V.2.2 Dérivabilité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

V.2.3 Dérivée de lnu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V.2.4 Logarithme népérien et calcul intégral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3 Des exponentielles et des logarithmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3.1 Notationab, poura,bréels eta0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3.2 Fonctions exponentielles de basea(aveca0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3.3 Fonctions logarithmes de basea(aveca0 eta?1). . . . . . . . . . . . . . . . . . . . . . . . . . 63

V.4 Équations différentielles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

V.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

LYCÉEPONTUS DETYARDTerminale VI

Table des matièresv

V.4.2 Équations du typeyay0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

V.4.3 Équations du typeyayb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V.4.4 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68

VI Dérivabilité69

VI.1 Fonctions dérivables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

VI.1.1 Nombre dérivé, fonction dérivée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

VI.1.2 Dérivabilité des fonctions usuelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.1.3 Principaux résultats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.2 Dérivation d"une fonction composée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.2.1 Théorème de dérivation d"une fonction composée. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.2.2 Dérivée de la fonctionu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VI.2.3 Dérivée de la fonctionun(n?). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VI.3 Dérivation et études de fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VI.3.1 Sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VI.3.2 Extremum local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VI.4 Dérivées successives d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VI.5 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73

VII Nombres complexes77

VII.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77

VII.1.1 Des équations et des ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

VII.1.2 Activités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 77

VII.1.3 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

VII.1.4 Calcul dans?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

VII.2 Interprétations géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VII.2.1 Affixe, point image, vecteur image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VII.2.2uu,ku,MM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VII.2.3 Écriture complexe de certaines symétries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VII.2.4 Coordonnées polaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VII.2.5 Module et arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VII.3 Propriétés algébriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VII.3.1 Propriétés du conjugué. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VII.3.2 Propriétés du module et des arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

VII.3.3 Formule de MOIVRE(complément). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

VII.4 Notation exponentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII.4.1 Une équation différentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII.4.2 Définitions et propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII.4.3 Forme exponentielle et symétries usuelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.4.4 Formules d"EULER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.4.5 Racines carrées d"un nombre complexe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.5 Nombres complexes et polynômes (compléments). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.5.1 Théorème fondamental de l"algèbre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

VII.5.2 Résolution des équations du second degré. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

VII.6 Utilisation des nombres complexes (compléments). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.6.1 Racinesn-ièmes de l"unité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.6.2 Racinesn-ièmes d"un nombre complexe non nul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.6.3 Polynômes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

VII.6.4 Forme algébrique des racines carrées d"un nombre complexe. . . . . . . . . . . . . . . . . . . . . 92

VII.6.5 Trigonométrie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

VII.7 Géométrie et nombres complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VII.7.1 Propriétés générales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VII.7.2 Écriture complexe de quelques transformations usuelles. . . . . . . . . . . . . . . . . . . . . . . . 95

VII.7.3 Affixe du barycentre d"un système de points pondérés. . . . . . . . . . . . . . . . . . . . . . . . . . 96

????-????série S viTable des matières

VIII Intégration97

VIII.1Primitives d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VIII.1.1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VIII.1.2Détermination pratique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VIII.1.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

VIII.2Premiers calculs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

VIII.2.1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VIII.2.2Intégrale d"une fonction constante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VIII.2.3Intégrale d"une fonction en escalier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VIII.2.4Activité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 102

VIII.2.5Propriétés des intégrales de fonctions en escalier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VIII.3Intégrale de Riemann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VIII.3.1Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103

VIII.3.2Sommes de Riemann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VIII.3.3Exemple d"intégrale d"une fonction usuelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VIII.4Théorème fondamental de l"analyse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII.4.1Problème ouvert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII.4.2Théorème fondamental de l"analyse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII.4.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110

VIII.5Proptiétés algébriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VIII.5.1Relation de Chasles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VIII.5.2Linéarité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 111

VIII.5.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 112

VIII.6Propriétés de comparaison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VIII.6.1Signe de l"intégrale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VIII.6.2Inégalité de la moyenne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

VIII.6.3Valeur moyenne d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VIII.6.4Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 116

VIII.7Autres techniques de calcul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VIII.7.1Intégration par parties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VIII.7.2Intégration et invariance géométrique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

VIII.7.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120

IX Dénombrement121

IX.1 Notions Préliminaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

IX.1.1 Rappels et compléments sur les ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

IX.1.2 Produit cartésien d"ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

IX.2 Factorielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 123

IX.3 Tirage depéléments dans un ensemble ànéléments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IX.3.1 Tirages successifs avec remise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IX.3.2 Tirages successifs sans remise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IX.3.3 Combinaisons - Tirages simultanés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

IX.3.4 Tableau récapitulatif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

X Calculdes probabilités131

X.1 Calculs de probabilités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

X.1.1 Vocabulaire des événements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

X.1.2 Probabilité d"un événement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

X.1.3 Probabilités conditionnelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

X.2 Variable aléatoire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138

X.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

X.2.2 Fonction de répartition d"une variable aléatoire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

X.2.3 Caractéristiques d"une variable aléatoire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

X.2.4 Variables aléatoires indépendantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

X.3 Lois de probabilités discrètes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

X.3.1 Loi binomiale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

X.3.2 Loi de Poisson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

X.4 Lois de probabilités continues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

X.4.1 Intégrales généralisées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

X.4.2 Généralités sur lois de probabilités continues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

X.4.3 Loi uniforme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

LYCÉEPONTUS DETYARDTerminale VI

Table des matièresvii

X.4.4 Loi exponentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

X.5 Adéquation à la loi équirépartie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

XI Barycentre153

XI.1 Barycentre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 153

XI.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

XI.1.2 Activités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 153

XI.1.3 Définition et propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

XI.1.4 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156

XI.1.5 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 158

Index159

????-????série S viiiTable des matières

LYCÉEPONTUS DETYARDTerminale VI

Chapitre IVocabulaire de la logiqueI.1 Qu"est-ce qu"une proposition?

DÉFINITIONI.1.1PROPOSITION

Unepropositionest un énoncé qui est soit vrai soit faux. ExempleConsidérons un quadrilatère ABCD, dans le plan. On peut envisager les propositions, P : " ABCD est un carré »;

Q : " ABCD est un parallélogramme ».

Suivant la nature du quadrilatère ABCD la proposition P, comme la proposition Q, est soit vraie, soit fausse.

I.2 Négationd"une proposition

DÉFINITIONI.2.1

La négation d"une proposition P est la proposition, notée " non P » ou "P » ou encore "P », qui est fausse lorsque P

quotesdbs_dbs4.pdfusesText_8