[PDF] [PDF] MATH 304 Linear Algebra Lecture 10: Linear independence Basis

Otherwise vectors v1,v2, ,vk are called linearly independent That is, if An infinite set S ⊂ V is linearly dependent if Show that functions ex, e2x, and e3x



Previous PDF Next PDF





[PDF] Math 54 Selected Solutions for Week 11 Section - Berkeley Math

Determine whether the given functions are linearly dependent or linearly independent on the specified interval Justify your decision 1sinx,cosx,tanxl on (- π/2, 



[PDF] Linear Dependence and Linear Independence - Purdue Math

16 fév 2007 · If v = 0, then {v} is linearly dependent, since for any nonzero scalar c1, c10 = 0 is c1 = 0 Consequently, {v} is linearly independent



[PDF] Linear dependence and independence (chapter 4)

The set of vectors {x1,x2, ,xk} is linearly dependent if r1x1 + r2x2 + ··· + rkxk = 0 for some r1,r2, ,rk ∈ R linearly dependent? We have to determine whether or not we can find real set of linearly independent functions in the vector space F



[PDF] Exercise Set 43

Use the Wronskian to show that a set of functions is linearly independent Exercise Set 4 3 1 Explain why the following are linearly dependent sets of vectors



[PDF] MTH 256 – Sec 41 Sample Problems - Oregon State University

Determine whether the following functions are linearly independent If not, find a linear relation among them f1(t)=2t − 3, f2(t)=2t2 + 



[PDF] Chapter 3 - Theory of Linear Differential Equation

If these functions are not linearly independent then they are linearly dependent Remark: For any n−th order homogeneous linear DE there are n linearly 



[PDF] Homework  Solutions - Eric Malm

Determine whether the functions f(x) = 2 cos x + 3 sin x and g(x) = 3 cos x − 2 sin x are linearly dependent or linearly independent on the real line Solution: We  



[PDF] MATH 304 Linear Algebra Lecture 10: Linear independence Basis

Otherwise vectors v1,v2, ,vk are called linearly independent That is, if An infinite set S ⊂ V is linearly dependent if Show that functions ex, e2x, and e3x



[PDF] LINEAR INDEPENDENCE, THE WRONSKIAN, AND VARIATION OF

{x1(t), ,xn(t)} are linearly independent, then (2) is the general solution of the differential equation We will now show that if the Wronskian of a set of functions is not zero, then the functions are dependent solutions of (1) Suppose that we 



[PDF] Partial Solution Set, Leon §33 331 Determine whether the

3 3 1 Determine whether the following vectors are linearly independent in R2 three span R3, so if we add any vector(s) we create a linearly dependent set are to determine whether the functions cosx,1,sin2 (x/2) are linearly independent

[PDF] déterminer l'ensemble des images d'une fonction

[PDF] déterminer l'ensemble des points m

[PDF] determiner l'ensemble des points m(x y)

[PDF] determiner l'ensemble des primitives

[PDF] determiner l'ensemble des reels x

[PDF] determiners

[PDF] deterministic finite automata and regular expressions

[PDF] detroit to chennai lufthansa flight status

[PDF] deux droites sécantes dans un plan

[PDF] deux droites sécantes definition

[PDF] deux droites secantes en un point

[PDF] deux droites sécantes et angles

[PDF] deux droites sécantes représentation paramétrique

[PDF] deux droites sécantes sont coplanaires

[PDF] deux droites sécantes vecteur

MATH 304

Linear Algebra

Lecture 10:

Linear independence.

Basis of a vector space.

Linear independence

Definition.LetVbe a vector space. Vectors

v

1,v2,...,vk?Vare calledlinearly dependentif

they satisfy a relation r

1v1+r2v2+···+rkvk=0,

where the coefficientsr1,...,rk?Rare not all equal to zero. Otherwise vectorsv1,v2,...,vkare calledlinearly independent. That is, if r

1v1+r2v2+···+rkvk=0=?r1=···=rk= 0.

An infinite setS?Vislinearly dependentif

there are some linearly dependent vectorsv1,...,vk?S.

OtherwiseSislinearly independent.

Examples of linear independence

•Vectorse1= (1,0,0),e2= (0,1,0), and

e

3= (0,0,1) inR3.

xe1+ye2+ze3=0=?(x,y,z) =0 =?x=y=z= 0

•MatricesE11=?1 00 0?

,E12=?0 10 0? E

21=?0 01 0?

, andE22=?0 00 1? aE

11+bE12+cE21+dE22=O=??a b

c d? =O =?a=b=c=d= 0

Examples of linear independence

•Polynomials 1,x,x2,...,xn.

a

0+a1x+a2x2+···+anxn= 0 identically

•The infinite set{1,x,x2,...,xn,...}.

•Polynomialsp1(x) = 1,p2(x) =x-1, and

p

3(x) = (x-1)2.

a

1p1(x) +a2p2(x) +a3p3(x) =a1+a2(x-1) +a3(x-1)2=

= (a1-a2+a3) + (a2-2a3)x+a3x2.

Hencea1p1(x) +a2p2(x) +a3p3(x) = 0 identically

=?a1-a2+a3=a2-2a3=a3= 0 =?a1=a2=a3= 0

ProblemLetv1= (1,2,0),v2= (3,1,1), and

v

3= (4,-7,3). Determine whether vectors

v

2,v2,v3are linearly independent.

We have to check if there existr1,r2,r3?Rnot all

zero such thatr1v1+r2v2+r3v3=0. This vector equation is equivalent to a system???r

1+ 3r2+ 4r3= 0

2r1+r2-7r3= 0

0r1+r2+ 3r3= 0((

1 3 4 0 2 1-7 0 0 1 3 0))

The vectorsv1,v2,v3are linearly dependent if and

only if the matrixA= (v1,v2,v3) is singular.

We obtain that detA= 0.

TheoremThe following conditions are equivalent:

(i) vectorsv1,...,vkare linearly dependent; (ii) one of vectorsv1,...,vkis a linear combination of the otherk-1 vectors.

Proof:(i) =?(ii) Suppose that

r

1v1+r2v2+···+rkvk=0,

v i=-r1 riv1- ··· -ri-1rivi-1-ri+1rivi+1- ··· -rkrivk. (ii) =?(i) Suppose that v for some scalarssj. Then s

TheoremVectorsv1,v2,...,vm?Rnare linearly

dependent wheneverm>n(i.e., the number of coordinates is less than the number of vectors).

Proof:Letvj= (a1j,a2j,...,anj) forj= 1,2,...,m.

Then the vector equalityt1v1+t2v2+···+tmvm=0 is equivalent to the system ?a

11t1+a12t2+···+a1mtm= 0,

a

21t1+a22t2+···+a2mtm= 0,

a n1t1+an2t2+···+anmtm= 0. Note that vectorsv1,v2,...,vmare columns of the matrix (aij). The number of leading entries in the row echelon form is at mostn. Ifm>nthen there are free variables, therefore the zero solution is not unique.

Example.Consider vectorsv1= (1,-1,1),

v

2= (1,0,0),v3= (1,1,1), andv4= (1,2,4) inR3.

Two vectors are linearly dependent if and only if

they are parallel. Hencev1andv2are linearly independent.

Vectorsv1,v2,v3are linearly independent if and

only if the matrixA= (v1,v2,v3) is invertible. detA=??????1 1 1 -1 0 1

1 0 1??????

=-????-1 11 1???? = 2?= 0.

Thereforev1,v2,v3are linearly independent.

Four vectors inR3are always linearly dependent.

Thusv1,v2,v3,v4are linearly dependent.

Problem.Show that functionsex,e2x, ande3x

are linearly independent inC∞(R).

Suppose thataex+be2x+ce3x= 0 for allx?R, where

a,b,care constants. We have to show thata=b=c= 0.

Differentiate this identity twice:

ae x+be2x+ce3x= 0, ae x+ 2be2x+ 3ce3x= 0, ae x+ 4be2x+ 9ce3x= 0.

It follows thatA(x)v=0, where

A(x) =((

exe2xe3x e x2e2x3e3x e x4e2x9e3x)) ,v=(( a b c))

A(x) =((exe2xe3x

e x2e2x3e3x e x4e2x9e3x)) ,v=((a b c)) detA(x) =ex??????1e2xe3x

1 2e2x3e3x

1 4e2x9e3x??????

=exe2x??????1 1e3x

1 2 3e3x

1 4 9e3x??????

=exe2xe3x??????1 1 11 2 31 4 9?????? =e6x??????1 1 11 2 31 4 9?????? =e6x??????1 1 10 1 21 4 9?????? =e6x??????1 1 10 1 20 3 8?????? =e6x????1 23 8???? = 2e6x?= 0.

Since the matrixA(x) is invertible, we obtain

A(x)v=0=?v=0=?a=b=c= 0

Wronskian

Letf1,f2,...,fnbe smooth functions on an interval

[a,b]. TheWronskianW[f1,f2,...,fn] is a function on [a,b] defined by

1(x)f2(x)···fn(x)

f f (n-1)

1(x)f(n-1)

TheoremIfW[f1,f2,...,fn](x0)?= 0 for some

x

0?[a,b] then the functionsf1,f2,...,fnare

linearly independent inC[a,b].

Theorem 1Letλ1,λ2,...,λkbe distinct real

numbers. Then the functionseλ1x,eλ2x,...,eλkx are linearly independent.

Theorem 2The set of functions

{xmeλx|λ?R,m= 0,1,2,...} is linearly independent.

Spanning set

LetSbe a subset of a vector spaceV.

Definition.Thespanof the setSis the smallest

subspaceW?Vthat containsS. IfSis not empty thenW=Span(S) consists of all linear combinations r1v1+r2v2+···+rkvksuch that v

1,...,vk?Sandr1,...,rk?R.

We say that the setSspansthe subspaceWor

thatSis aspanning setforW.

Remark.IfS1is a spanning set for a vector space

VandS1?S2?V, thenS2is also a spanning set

forV. Basis

Definition.LetVbe a vector space. A linearly

independent spanning set forVis called abasis.

Suppose that a setS?Vis a basis forV.

"Spanning set" means that any vectorv?Vcan be represented as a linear combination v=r1v1+r2v2+···+rkvk, wherev1,...,vkare distinct vectors fromSand r

1,...,rk?R. "Linearly independent" implies that the above

representation is unique: =?(r1-r?1)v1+ (r2-r?2)v2+···+ (rk-r?k)vk=0 =?r1-r?1=r2-r?2=...=rk-r?k= 0

Examples.•Standard basis forRn:

e

1= (1,0,0,...,0,0),e2= (0,1,0,...,0,0),...,

e n= (0,0,0,...,0,1). Indeed, (x1,x2,...,xn) =x1e1+x2e2+···+xnen.

•Matrices?1 00 0?

,?0 10 0? ,?0 01 0? ,?0 00 1? form a basis forM2,2(R).?a b c d? =a?1 00 0? +b?0 10 0? +c?0 01 0? +d?0 00 1?

•Polynomials 1,x,x2,...,xn-1form a basis for

P n={a0+a1x+···+an-1xn-1:ai?R}.

•The infinite set{1,x,x2,...,xn,...}is a basis

forP, the space of all polynomials.

Bases forRn

Letv1,v2,...,vkbe vectors inRn.

Theorem 1Ifk v

1,v2,...,vkdo not spanRn.

Theorem 2Ifk>nthen the vectors

v

1,v2,...,vkare linearly dependent.

Theorem 3Ifk=nthen the following conditions

are equivalent: (i){v1,v2,...,vn}is a basis forRn; (ii){v1,v2,...,vn}is a spanning set forRn; (iii){v1,v2,...,vn}is a linearly independent set.

Example.Consider vectorsv1= (1,-1,1),

v

2= (1,0,0),v3= (1,1,1), andv4= (1,2,4) inR3.

Vectorsv1andv2are linearly independent (as they

are not parallel), but they do not spanR3. Vectorsv1,v2,v3are linearly independent since??????1 1 1 -1 0 1

1 0 1??????

=-????-1 1

1 1????

=-(-2) = 2?= 0.

Therefore{v1,v2,v3}is a basis forR3.

Vectorsv1,v2,v3,v4spanR3(becausev1,v2,v3

already spanR3), but they are linearly dependent.quotesdbs_dbs17.pdfusesText_23